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GENE3?AL INTRODUCTION 

Definitions and Introduction 

The failure of a soil mass in a slope is called a slide. It 

involves a downward and outward movement of the entire soil mass. A 

slide may occur in almost every conceivable manner, slowly or suddenly, 

with or without any apparent provocation. Usually, slides are due to 

excavation or undercutting the toe of the slope (Terzaghi and Peck, 

1967). Slope failure is a widespread natural catastrophe, often 

occurring in conjunction with earthquakes or floods. Although an 

individual slope failure generally is not so spectacular or so costly as 

an earthquake, major flood, or tornadoes, the direct and indirect total 

financial loss due to slope failures has been estimated exceeds one 

billion dollars per year in the United States (Krohn and Slosson, 1976, 

Schuster, 1978). 

A survey conducted by the Federal Highway Administration indicates 

that approximately 50 million dollars is spent annually to repair major 

landslides on the federally financed portion of the national highway 

system (Schuster, 1978). Various studies have shown that most damaging 

landslides are human-related; it is estimated that reduction of 95% to 

99% in landslide losses can be obtained by means of preventive measures 

that incorporate thoroughly preconstruction investigation, analysis, 

design, and one followed by careful construction procedures (Schuster, 

1978). 

Stability analysis is used to analyze the condition of a slope to 
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see whether it is stable or not, based on principles of soil mechanics. 

The goal is to achieve a reliable assessment of the stability of slopes, 

as well as the need for controlling and corrective measures (Huang, 

1983). Geological studies emphasize origin, course, and resulting 

landforms with movement phenomena considered as a natural process 

(Huang, 1983). A combination of engineering and geological approaches 

provides the best overall picture. 

Among different kinds of soil and rock materials, the stability of 

overconsolidated clays and clayshales is a special problem. The reason 

why it is of interest to civil engineers, engineering geologists, and 

applied geomorphologists is because of the abnormal behavior of the 

soils compared with other soil and rock materials. In addition to a 

tendency to slide under the influence of gravitational and other forces 

such as an increase of pore water pressure within a slope, there may be 

a progressive decrease in shear strength, and dissipation of recoverable 

strain energy due to weathering (Chowdhury, 1978). 

This thesis contains two major objectives, firstly, to collect and 

analyze the available information concerning the slope stability of 

overconsolidated clays and clayshales, where the questions to be 

discussed are: (1) the reasons for slope failure, (2) what kind of slope 

movements are involved in the slope failure, and (3) the mechanisms for 

slope failure. The second objective is to study and evaluate the 

effects of lateral stress on slope stability and define approaches 

toward a better prediction of slope failure. 
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Basic Concepts 

Time-rate 

The change of stability conditions upon excavation of a slope and a 

comparison between the behavior of a weak, normally consolidated clay, 

and a stiff, overconsolidated clay are illustrated in Figure 1 (Bishop 

and Bjerrum, 1960). During rapid excavation of an initially saturated 

slope pore pressures decrease in response to rebound and the changes in 

total stress. Total stress analyses can be performed to estimate 

stability at the end of construction. After excavation, the soil mass 

swells as the pore pressures increase to those governed by seepage 

conditions. If the ultimate pore pressures increase after excavation, 

then the factor of ss-foty declines to its lowest value when steady 

seepage conditions prevail (Morgenstern, 1977). 

The concepts shown in Figure 1 have been supported by several 

studies (Kenney and Uddin, 1974) including data from a slope failure of 

the Kimola Canal analyzed as changes in the factor of safety as 

conditions changes from undrained to steady seepage. Also, the data 

collected by Kankare (1969) were so complete that the calculation of the 

changes in factor of safety with time can be made. The analyses 

correctly predict the time of the failure and confirm that there was a 

steady tendency for the pore water pressure conditions to become more 

critical (Morgenstern, 1977). It is of interest to note that on the 

basis of vane tests, a total stress analyses gave a factor of safety of 

1.5 to 1.7 for the end-of-construction conditions but that this was not 
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adequate to avoid failure (Morgenstem, 1977). 
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Figure 1. Changes in pore water pressure and factor of safety 
during and after the excavation of a cut in clay (after 
Bishop and Bjerrum, 1960) 

For the comparison of normally-consolidated and over-consolidated 

behavior, at a given consolidation stress the undrained strength of an 

over-consolidated clay is greater than for a comparable normally 

consolidated clay. However, the A value for over-consolidated clay is 

less and the reduction in pore water pressure upon excavation therefore 

is greater, and the decline in factor of safety with pore water pressure 

redistribution is accordingly greater (Morgenstern, 1977). However, the 

decline in factor of safety may be related to progressive failure for 

normally consolidated clay or slopes with no excessive pore water 

pressure. 
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Classification 

By a practical geotechnical view point, clay can be classified to 

three groups: soft intact clays, stiff intact clays, and stiff fissured 

clays (Terzaghi, 1936). The majority of clays fall readily into one or 

other of these groups, though there are some transitional cases 

{Skempton and Hutchinson, 1969). Terzaghi (1936) distinguished between 

soft and stiff clays primarily by liquidity index. The criteria for 

distinguishing between soft and stiff clays are summarized in Table 1. 

This classification recognizes the equal importance of strength and 

structure. Intact clays, in their own words, are free from joints and 

fissures. In contrast, a clay which is fissured contains a network of 

structural discontinuities comprising one or more of the following 

types; fissures, joints, slickensides, and laminations (Skempton and 

Hutchinson 1969). 

The liquid limit of clays provides the best single index property 

as it reflects both the amount and the nature of the clay minerals 

present (Skempton and Hutchinson, 1969). Clays can also be classified 

by their origin or mode of formation which are; clays produced by rock-

weathering in situ, sedimentary clays, glacial clays, periglacial clays, 

and clays transported by landsliding (Skempton and Hutchinson, 1969). 

Clayshales composed of fine-grained, inorganic sedimentary 

materials are the predominant sedimentary rock in the earth's crust and 

thus are of great engineering significance (Morgenstern and Eigenbrod, 

1974). However, diverse opinions exist in regard to their 

classification and identification. The term shale has been used by some 
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to designate all argillaceous sediments including claystone, siltstone, 

mudstone, and marl (Ingram, 1953, Underwood, 1967). Whereas Twenhofel 

(1939) designated the larger group as mudstone or mud rock group and 

defined the shale as a member of this group. The boundaries between 

unindurated, indurated, and incipient metamorphic materials are of 

little primary interest to geologists, and therefore they have not been 

clearly defined (Morgenstern and Eigenbrod, 1974). For engineers, 

however, this distinction is important because of the sensitivity of the 

geotechnical properties to the nature and degree of induration as 

materials range from a soil to a rock (Morgenstern and Eigenbrod, 1974). 

Table 1. Criteria for distinguishing between soft and stiff clays 
(after Terzaghi, 1936) 

Clay Tpye Liquidity Index Consolidation State 

Soft ) 0.5 normal or lightly overconsolidated 

Stiff = 0.0 heavily overconsolidated 

Shales have been classified to two groups as shown in Figure 2 

(Mead, 1936), who suggested that there are no sharp lines of demarcation 

between the two types of materials. The ambiguity in classifications 

has resulted in the use of terms such as "clay-shales" (Morgenstern and 

Eigenbrod, 1974). 
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Figure 2. A geological classification of shale (after Mead, 1936) 

Morgenstern and Eigenbrod (1974) tested a large number of stiff-

clays, clay-shales, and mudstones, including several classical materials 

from different parts of the world. The disintegration of the samples 

upon alternate drying and wetting is generally called slaking. During a 

slaking test, the samples will absorb water and eventually reach water 

contents equal to their licjuid limits (Morgenstern and Eigenbrod, 1974). 

Based on the liquidity index change (AL), the durability of clayshales 

can be quantitatively determined (Morgenstern and Eigenbrod, 1974). 

Correlations also exist between the maximum water content, activity, and 

montmorillonite content (Eigenbrod, 1972). Other slaking tests to 

determine clayshale durability are also reported (Chapman et al., 1976). 



www.manaraa.com

8 

In order to evaluate the stability of overconsolidated clays and 

clayshales, several factors such as shear strength parameters, regional 

geomorphology, classification, clay content, and Atterberg limits must 

be acquired so that the knowledge from case studies can be used. Most 

of the case studies of stiff overconsolidated clay and clayshale slopes 

derive from slope failures in London clay, Oxford clay, and Lias clay of 

England (Skempton, 1964, 1970, 1977, 1985, James, 1970, 1971, Chandler, 

1972, 1974, Chandler and Skempton, 1974); Upper Cretaceous shales of 

Canada and United States (Morgenstern and Eigenbrod, 1974, Dupree et al, 

1979, Thompson and Hayley, 1975), Pennsylvanian shales of United States 

(Tourtelot, 1962, D'Appolonia et al., 1967, Mesri and Gibala, 1972, 

Linnan, 1986); and other clayshales distributed around the world 

(Bjerrum, 1967, Nakano, 1967, Yoshimaka, 1967, Esu and Calabresi 1969, 

Banks et al., 1975, Lutton et al., 1979). In spite of the variability 

in these shales, the engineering behavior and the shear strength 

parameters are similar. The residual strength of Pennsylvanian 

clayshales includes a cohesion near zero and friction angles ranging 

from 13° to 17°, and landslides occurring in this formation in southern 

Iowa, probably can be analyzed on the basis of these strength 

parameters. 

Classification of Sliding Movements 

The classification of landslides presented in Special Report 29 

(Varnes, 1958) has been well received by the profession, but some 

deficiencies have become apparent. Varnes (1978) therefore reviewed and 
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revised the classification system. His system considers the type of 

movement as a primary factor, with the material secondary. One obvious 

change is the use of the term slope movements rather than landslides 

(Vames, 1978). Another extension is to include extremely slow 

distributed movements of both rock and soil; these movements are 

designated in many classifications as creep (Varnes, 1978). Although 

the revised classification is widely accepted, the type of both movement 

and materials may vary from place to place or from time to time, and 

nearly continuous gradation may exist in both. Therefore, a rigid 

classification is neither practical nor desirable (Sharpe, 1938, 

Skempton and Hutchinsc.i, 1969, Vames, 1978). Nevertheless, a good 

classification system will make it easier for both engineers and 

geologists to identify and know how to approach a problem. 

Types of movement are divided into five main groups: falls, 

topples, slides, spreads, and flows (Vames, 1978). A sixth group, 

complex slope movements, includes combinations of two or more of the 

other five types (Varnes, 1978). Materials are divided into two 

classes: rock and engineering soil. The latter is further divided into 

debris and earth (Skempton and Hutchinson, 1969, Varnes, 1978). For 

stability analysis of stiff overconsolidated clays, classes are as 

followings: 

(A) Falls: Clay falls typically are failures in the steep slopes 

of artificial excavations or eroding river banks (Skempton and 

Hutchinson, 1969). These falls are usually rather insignificant. 
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nevertheless as a consequence of the removal of lateral support, bulging 

occurs at the slope foot, and tension cracks open behind its crest. 

Progressive failure may occur as a result of stress increases in the 

root area. Water will infiltrate into tension cracks and the softening 

process will lower soil strength (Skempton and Hutchinson, 1969, Vames, 

1978). 

(B) Topples; Topples have been recognized relatively recently as a 

distinctive type of movement (Varnes, 1978). Movement is due to force 

that causes an overturning moment about a pivot point below the center 

of gravity of the unit. 

(C) Slides: The process of sliding is defined by Varnes (1978) as 

"shear strain and displacement along one or several surfaces which are 

visible or may reasonable be inferred." The presence of a displacement 

discontinuity is not implied in this definition and the character and 

thickness of the sliding zone is unspecified (Hungr, 1981). For the 

purpose of stability analysis it is vsually assumed sliding as the 

movement of a relatively undistorted portion of the slope mass on slip 

surfaces. Slides involved in the shear failure can be subdivided into 

rotational and translational slides (Skempton and Hutchinson, 1969, 

Chowdhury, 1978, Varnes, 1978). The ability to identify these two 

slides is very important for engineers in the analysis of stability and 

the design of control methods. Rotational slides occur 

characteristically in slopes of fairly uniformly clay or shales 

(Skempton and Hutchinson, 1969). The commonest examples of rotational 

slides are little deformed slumps, which are slides along a surface of 
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rupture that is curved concavely upward. Slumps and slumps combined 

with other types of movement make up a high proportion of landslide 

problems (Vames, 1978). Such slides are relatively deep-seated with 

depthrinitial downslope length (D/L) ratios between 0.15 and 0.33 and 

generally are developed on the slopes of excavation and on actively 

eroding cliffs. 

Landslides of similar D/L ratio may behave quite differently during 

and after failure (Skempton and Hutchinson, 1969). Experience shows 

that the depth ratio tends to be greater in soils of low consistency 

(Zaruba and Mend, 1969), although this may be much affected by 

nonhomogeneity. The thickness of the sliding zone and the rapidity of 

movement are highly variable (Hungr, 1981). Slides in fissured 

overconsolidated clays tend to be noncircular, possibly due to the 

increased rate of softening in the back scarp (Skempton and Hutchinson, 

1969), although they occasionally may retain a rotational character 

(Hungr, 1981). 

Translational slides generally result from pre-determined surface 

of a heterogeneity located at shallow depth beneath the slope (Skempton 

and Hutchinson, 1969, Varnes, 1978). The failure surface tends to be 

relatively planar and run roughly parallel to the slope of of the ground 

(Skempton and Hutchinson, 1969). The movement of translational slides 

is commonly controlled by surfaces of weakness, such as faults, joints, 

bedding planes, and variations in shear strength between layers of 

bedded deposits, or by the contact between firm bedrock and overlying 
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detritus (Vames, 1978). 

Compound slides are formed of a combination of curved and planar 

elements, and the slide movements have a part-rotational, part-

translational character (Skempton and Hutchinson, 1969). The slide 

masses are correspondingly broken due to several distortion and shearing 

action accompanying the sliding movements. 

(D) Spreads: The dominant mode of movement in spreads is a 

distributed lateral extension accommodated by shear or tensile fractures 

(Vames, 1978). Two types of spreads may be distinguished, the first 

one without a well-defined controlling basal shear surface or zone of 

plastic flow (predominantly in bedrock), the second type as on extension 

or gradation of rock or soil resulting from liquefaction, plastic flow, 

or subjacent material (Vames, 1978). 

(E) Flows: Slope movement of flow can be classified as bedrock and 

soil flow (Varnes, 1978). Flow movements in bedrock include 

deformations that can occur among many large or small fractures or even 

microfractures, without concentration of displacement along a through-

going fracture (Varnes, 1978). The movements can be extremely slow and 

may more or less steady in time, and may result in folding, bending, 

bulging, or other manifestations (Varnes, 1978). Much of these have 

been classified as creep. However, creep is particularly troublesome 

because it has been used long and widely with different meanings, in 

both the material sciences such as metallurgy and in the earth sciences 

such as geomorphology (Varnes, 1978). Flow in soil include movement in 

debris and earth, which can be more accurately recognized as flows 
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because the relative distributed (Varnes, 1978). Debris flows commonly 

result from unusually heavy precipitation or from thaw of snow or frozen 

soil, which are favored by the presence of soil on steep mountain slopes 

(Skempton and Hutchinson, 1969, Vames, 1978). 

(F) Complexes: Complex movement is a combination of one or more of 

the five principal types of movement decribed above, either within 

various parts of the moving mass or at different stages in development 

of the movements. Included are rock-fall-debris flow, slump and topple, 

rock slide, rock fall, cambering and valley bulging, and slump-earth 

flow (Varnes, 1978). 

Laboratory and In  S i tu  Shear Characteristics of 

Stiff Overconsolidated Clays and Clayshales 

Due to the characteristics of stiff overconsolidated clays and 

clayshales, some factors that concern stability analysis are pore 

pressure, effective stress, peak and residual strength, and effects of 

fissures and anisotropy. 

(A) Pore pressure: The design of slopes in terms of long time 

stability requires a knowledge of the pore pressures within them. 

Loading or unloading of soils results in pore water pressure changes 

that are of a transient nature. The rate of change depends on the total 

stress if no drainage occurs. If drainage occurs, pore water pressure 

is function of coefficient of consolidation, coefficient of bound, time 

oeriod, and boundary conditions (Walbancke, 1975). 

Two direction of pore water are possible relative to atmospheric 
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pressure, positive and negative. The construction of an earth darn or 

embankment on a soft clay results in positive excess pore pressures in 

the foundation as the soil compresses. At the end of construction, pore 

water pressures are high and consequently the shear strength and factor 

of safety are low. The pore water pressure will dissipate as time 

passes, and the strength and factor of safety will increase (Bishop and 

Bjerrum, 1960). On the other hand, pore water pressure will be negative 

for overconsolidated clays and clayshales due to stress relief in the 

excavation or erosion of natural slope. Negative pore water pressure 

contribute to high shear strength and factor of safety at the end of 

construction. Again a pore pressure equilibrium is gradually attained 

as time passes, and the strength and factor of safety therefore decrease 

(Bishop and Bjerrum, 1960). 

The quantification of excess pore water pressure derives from a 

concept of pore water pressure parameter A and B first proposed by 

Skempton (1954). He proposed Au = B[Ao3 + A(Aoi - A 0 3 ) ]  

where B = empirical coefficient related to the soil compressibility 

and degree of saturation: B = 1 when soil is saturated, and 

B = 0 when soil is dry; 

A03 = change in confining or minor principal stress 

Aai = change in major principal stress 

Parameter A depends on the type of soil and varies with stress 

level and stress history. It is significantly influenced by: (1) the 

level to which the soil has previously been strained, (2) the initial 
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stress system in the soil, (3) the stress history of the soil, and (4) 

the type of total stress path to which the soil is subjected to the type 

of stress change, e.g., load or unload (Lambe and Whitman, 1969). 

For overconsolidated clays and clayshales, A varies from 0 to -1/2. 

Skempton's equation is very sensitive to the initial and to the applied 

stress, and because initial stresses may not be known it can be used 

only with difficulty in prediction of the behavior of overconsolidated 

clays and clayshales system. The advantages are simplistic in concept 

and computation as well as its wide use (Vaid and Campanella, 1974). 

(B) Effective stress: Terzaghi (1943) stated that the effective 

stress a' in a given direction within an element of saturated soil is 

a' = a - Uy, 

where u = the total stress acting in that direction 

Uy = the pore water pressure in the element 

The equation is exact within the limits of the most refined experimental 

methods (Skempton and Hutchinson, 1969). If the soil is partially 

saturated there will be a pressure Ug in the air voids somewhat greater 

than the pressure u„ in the water phase (Skempton and Hutchinson, 1969). 

The effective stress is then given by the expression (Bishop, 1960) 

a' = a - [u„ + (1 - x)(Ua - u„)] 

where x = a coefficient to be determined experimentally 

when the soil is fully saturated x = 1 and a' = cr - u„ 

when the voids contain only air, x = 0 and a' = o - Ug 

For soils with a high degree of saturation, e.g., more than 90%, the 

term (1 - x)(Ua - u„) can be neglected without significant error (Lambe 
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and Whitman, 1969). 

As stated in (A), for prediction of long terra stability effective 

stress analysis will be more appropriate than total stress. 

(C) Peak and residual strength; Most heavily overconsolidated 

clays show stress-strain relations indicative of strain softening. As a 

sample is strained in a drained direct shear test, the shear resistance 

increases, ultimately reaching a maximum value identified as the peak 

strength. The failure envelope defined by peak strength can be 

represented by the Mohr-Coulomb theory that is expressed as following: 

s = Cp + (a -u) * tan <J> 

where s = drained shear strength 

Cp = cohesion 

o = total normal stress 

u = pore water pressure 

* = angle of internal friction 

Softening is the mechanism which was first suggested to explain a 

time-dependent strength decrease (Terzaghi, 1936). Due to stress 

release by excavation or erosion, the fissures open, causing softening 

of the clay. The softened material eventually deforms, a stress 

redistribution occurs and finally the clay becomes a normally 

consolidated or "fully softened clay" (Skempton, 1948). The destruction 

of the original soil structure results in a complete loss of the 

cohesion. This softening process is not dependent on large deformations 

within the slope before failure but is dependent on the presence of 
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fissures and joints within the soil (Eigenbrod, 1972). Skerapton (1970) 

further interpreted this stage as the reduction from peak to fully 

softened strength which is attributed to an increase in water content 

along the shear zone. With numerous discontinuous shears, the strength 

at this point (fully softened) is appropriate to analysis of a first-

time slide. For an old or reactivated slide, large deformation and a 

continuous shear surface are needed to reach the residual strength, 

which can occur as the result of geological processes including tectonic 

folding, valley rebound, glacial shove, periglacial phenomena, and non

uniform swelling (Morgenstem, 1977). The interpretation of Skempton's 

recommendations concerning selection of strength parameters for 

analyzing long term slope stability was summarized in Table 2 by Lambe 

(1985). In this table, the first-time slide is one in which the slip 

surface located entirely in previously unsheared materials, and in 

reactivated slide it is in previously sheared material. 

Typical stress strain curves are sketched in Figure 3, the shape of 

curves varying in different kinds of soil. For soft silty clays little 

difference is shown between peak and residual strengths (Skempton, 

1970). With higher clay contents the difference tends to increase, even 

in the normally-consolidated condition, attributed to a decrease in 

strength from reorientation of clay particles along the slip surfaces 

(Skerapton and Hutchinson, 1969). At fully softened strength, or close 

to it, there is as yet no principal shear surface but instead a complex 

of minor shears such as the Riedel, thrust, and displacement shears 

(Skempton and Petley, 1967) which have not been linked into a continuous 
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surface. The reduction from fully softened to residual strength is 

attributed to reorientation of platy clay minerals parallel to the 

direction of shearing (Skempton, 1970). 

Table 2. Recommended strengths for analyzing cuts and natural slopes 
(after Lambe, 1985) 

Soil Deformation Strength 
c' 

Intact clay No previous large 
deformations 
(first-time slide) 

c'p *'P 

Overconsolidat ed 
fissured clay 
not highly expansive or 
not highly organic content 

No previous large 
deformations 
(first-time slide) 

c's *'s 

Overconsolidat ed 
fissured clay 
highly expansive or 
highly organic content 

No previous large 
deformations 
(first-time slide) 

0 *'r 

Overconsolidated clay Previous large 
deformations 

0 *'r 

c'p: cohesion at peak strength state 

*'p: friction angle at peak strength state 

c'g: cohesion at fully softened state 

4/g: friction angle at fully softened state 

friction angle at residual state 

Skempton (1985) summarized the effects of colloidal content on 

residual strength as follows: (1) clay content less than 25%, residual 
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friction angles are greater than 20°, a strength reduction from the 

fully softened strength to the residual strength does not occur; (2) 

clay contents between 25% and 50%, the residual strength depends on clay 

content as well as mineralogy; and (3) clay contents greater than 50%, 

residual strength is controlled almost entirely by mineralogy, a further 

increase in the percent clay having little effect. 

SHEAR 
STSE5S STRENGTH PEAK 0-C 

FULLY SOFTFNeO 
PEAK N-C 

RESIDUAL 

DISPLACEMENT 0 EFFECTIVE NORMAL PRESSURE (i. 

SHEiR 
STRESS 

DISPLACEMENT 
N-C WATER 

CONTENT 

CRITICAL STATE 

SHEAR 
STRENGTH 

0 EFFECTIVE NORMAL PRESSURE 

CRITICAL STATE 

0 DISPLACEMENT 

Figure 3. Shear characteristics of stiff clays (after Skempton, 1970) 

The residual friction angle can also be influenced by the following 

factors : 

(1) Mineralogy; The angles of residual shearing resistance of 

platy minerals such as montmorillonite, illite, or kaolinite orient in 

the direction of shear without interlocking and hence show low residual 
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strength. However, needle-shaped or sharp mineral particles such as 

crushed quartz or feldspar tend to interlock and have a higher residual 

friction angle. The following are in order of decreasing residual 

strength: massive minerals, micaceous minerals, kaolin and 

montmorillonite (Kenney, 1967, Hur.gr, 1981, Skempton, 1985). 

(2) Grain size; A decrease in grain size causes an increase of 

residual friction angle (Olson, 1962, Kenney, 1967). 

(3) Type of cation; Residual friction angle is increased by 

cations of higher valency, Ca+̂  > K+ = Na+ (Kenney, 1967). 

(4) Ion concentration in the pore fluid: Residual friction angle 

is increased for increases of salt concentration (Kenney, 1967). 

(5) Rate of shearing: The rate of displacement or strain 

influences residual strength of clays. However, the relationship has 

not yet been satisfactorily explored (Hungr, 1981, Skempton, 1985). It 

is found that drained friction angle increases very gradually with 

increasing rate, but Kenney (1967) found less than 1% increase for a 

range of minerals subjected to shearing rates increased by five orders 

of magnitude. Petley (1966) obtained a 5% increase in drained residual 

shear strength for a rate increase of three orders of magnitude. The 

results of the test of two clays over a range of speeds from about 100 

times slower to 100 times faster than the usual (slow) laboratory test 

rate gave on an average, a change in strength less than 2.5% per log 

cycle order of magnitude (Skempton, 1985). This suggests that 

variations in strength within the usual range of slow laboratory tests 

(0.002-0.01 mm/min) are negligible. In the field, from observation on 
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landslides, if the strength at a typical laboratory rate of 0.005 mm/min 

is taken as standard, the variations over this entire range lie between 

-3% aryi +5% (Skempton, 1985). 

Skempton (1985) also showed that for clays the increase in strength 

becomes pronounced at rates exceeding 100 mm/min. This may be 

associated with disturbance of the originally ordered structure, and 

turbulent shear produced in contrast to sliding shear where particles 

are orientated parallel to the plane of displacement (Skempton, 1985). 

As a result, negative pore pressures are generated and, as displacement 

continues, those are dissipated within the sample, thus leading to a 

decrease in strength. 

(D) Effects of fissures and anisotropy: Heavily overconsolidated 

clays and clayshales are commonly jointed and fissured. Terzaghi 

(1936) first established the practical significance of this observation 

and the influence on engineering behavior. The presence of fissures 

results in important size effects when conducting undrained strength 

tests, and is critical for short-term stability of slopes (Morgenstern, 

1977). It is found that large specimens and slope failures often 

display only 20%-30% of the strength found in small samples and by in 

situ vane tests (Morgenstern, 1977). A similar result also was found 

with other heavily overconsolidated clays and clayshales (Marsland, 

1967, McGown and Radwan, 1975), i.e., strength decreasing with 

increasing sample size. They suggest that the diameter of test 

specimens should be twice the fissure spacing to overcome size effects 
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(Marsland, 1967). 

Some anisotropy must be expected in clays as a consequence of their 

mode of formation, e.g., bedding and one dimensional consolidation in 

sedimentary deposits, and the presence of discontinuities which may 

effect a pronounced preferred orientation (Skempton and Hutchinson, 

1969). 

The undrained strength of many overconsolidated clays and 

clayshales is anisotropic because of pore water pressure changes 

associated with various stress paths and rotation of principal stresses 

(Morgenstem, 1977). McGown et al. (1974) draw attention to the 

preferred orientation, and lowest values of undrained strength occurred 

when the test was in the direction of the preferred orientation, in 

which 50%-60% of the maximum was observed. 
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PART I: THEORETICAL ANALYSIS OF FAILURE MECHANISMS 
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Review of Previous Works 

It Is an important and challenging responsibility for engineers and 

geologists to identify where landslides are likely to occur. Landslides 

may be caused by man-related behavior as well as nonhuman related 

factors, the latter often referred to as "acts of God." In most cases a 

number of contributing factors exist simultaneously. Attempting to 

decide the specific factor producing failure is not only difficult it is 

incorrect. Often the latest factor is only a trigger that sets in 

motion on earth mass that already was on the verge of failure (Sowers 

and Sowers, 1970). 

All slides involve the failure of earth materials under shear 

stress. The initiation of the process can be reviewed by (1) the 

factors that contribute to increased shear stress and (2) the factors 

that contribute to low or reduced shear strength (Schuster, 1978). 

Factors that contribute to increased shear stress, such as removal of 

lateral support ; surcharge; earthquakes; and vibrations from blasting, 

machinery, traffic, thunder; regional tilting; removal of underlying 

support; volcanic processes; and lateral pressure caused by water, 

freezing of water, swelling of clay, and mobilization of residual 

stress. 

Factors that contribute to low or reduced shear strength can be 

divided into two groups: (1) Factors stemming from the initial state 

or inherent characteristics of the material which are part of the 

geological setting that may be favorable to landslides. These factors 

may exist for a long period of time without failure, and include the 
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material composition, texture, and gross structure and slope geometry, 

(2) Changes that tend to lower the shear strength of the material, such 

as changes due to weathering and other physicochemical reactions, 

changes in intergranular forces due to water content and pressure in 

pores and fractures, and changes in structure due to stress relief 

(Vames, 1978). 

All of the factors listed above can cause sliding slope movements. 

However, seldom can a landslide be attributed to a single definite 

cause. Furthermore, landslides may take place under the influence of 

geologic, topographic, or climatic factors that are common to large 

areas (Schuster, 1978). Thus, the causes must be understood if other 

similar slides are to be avoided or controlled. 

For theoretical analyses of failure mechanism, Chowdhury (1980) 

classified landslides as; (1) landslides due to exceptional causes such 

as earthquake and liquefaction; (2) ordinary landslides which occur 

during or soon after ordinary natural phenomena, e.g., rainfall, or man-

made changes, e.g., excavation of natural slopes or construction of 

fills, or other environmental changes; and (3) landslides due to no 

apparent cause or where it is difficult to identify the immediate 

disturbing agent or trigger mechanism. In this thesis, I will emphasize 

factors (2) and (3). 

It have always been troublesome that many failures in 

overconsolidated clays and clayshales occur long after the slopes have 

been cut. Terzaghi (1936) first interpreted this apparent decrease in 
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stability with time as "softening". He suggested that in stiff fissured 

overconsolidated clays and clayshales, the lateral stress release which 

results from excavating a cut could cause some opening of fissures. 

This softening starts from the face of the open fissures under zero 

effective stresses and leads to a reduction in average strength. The 

end product of such a softening process must be a clay reduced 

essentially to its normally consolidated condition (Skempton, 1948). 

Prior to 1950s, the studies were generally limited to a * = 0 

failure analysis (Skempton, 1948). The use of a * = 0 concept for 

stability problems in normally consolidated and lightly overconsolidated 

clay is widely accepted (Chowdhury, 1978). However, if the 

overconsolidation ratio is higher than about 4 to 8, the soil tends to 

dilate during shear with a consequent decrease of pore water pressure 

such that the undrained strength exceeds the drained strength 

(Chowdhury, 1978). High negative pore water pressures then tend to draw 

water into the soil with consequent swelling and reduction of strength. 

Therefore, the undrained strength cannot be relied upon and its use in 

stability analysis will lead to results on the unsafe side (Terzaghi and 

Peck, 1967). 

A rational approach to stability analysis was made possible with 

the development of the effective stress method by Bishop (1952, 1955), 

which provided a more dependable prediction of field behavior. Henkel 

and Skempton (1954) suggested c' = 0 and <!>'residual to apply the 

laboratory tests for long-term design of slopes in London clay. 

However, for the long-term stability of slopes, the effective stress 
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analysis will not reflect the critical situation at the end of 

construction (Eigenbrod, 1972). Unloading due to excavation results in 

the development of negative pore water pressure, and with time these 

negative pore water pressures will dissipate until they are in 

equilibrium with the steady seepage flow pattern appropriate to the new 

slope profile. This process causes a decrease of the average principal 

effective stresses that can lead to slope failure (Eigenbrod, 1972). 

From a number of cases of slides occurring in highly 

overconsolidated clays in California, it has been proposed that a 

relatively small movement may suffice to reduce the strength from that 

of the laboratory "ultimate" value following brittle failure, and that 

previous slides or even small movements have permanently damaged the 

shear resistance of the stiff clay (Gould, 1960). Based on the 

laboratory triaxial shear test, the cohesion (c) will be mobilized first 

and friction angle (*) will be mobilized later with larger field strain 

(Schmertmann and Osterberg, 1960). In the 4th Rankin Lecture, Skempton 

(1964) proposed the residual strength is the strength on natural slip 

surfaces after large displacement, and suggested that some mechanism of 

progressive failure might have caused the low strength values. 

Another possible mechanism for progressive failure is that there is 

a link between recoverable strain energy and the potential for 

progressive failure, and that weathering increases this potential by 

destruction of diagenetic bonds in overconsolidated clays and clayshales 

(Bjerrum, 1967). The condition for this mechanism depends on changes in 
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the followlngs; (1) The ratio of lateral internal stress to peak shear 

strength, (2) the ratio of lateral internal strain from recoverable 

strain energy to peak strain, and (3) the ratio of peak strength to 

residual strength. 

Bishop (1967) proposed a mechanism based on the fact that a zone of 

plastic equilibrium is formed in a slope due to local overstress long 

before general failure takes place, then the shearing resistance of 

progressive extension of failure along the potential slip surface drops 

from peak to residual state within this zone. Peck (1967) discussed a 

set of Conlon's tests and proposed a mechanism with respect to 

progressive failure on overconsolidated clays, in which nonuniform 

stress-strain conditions resulting in nonuniform mobilization of the 

shearing resistance and average strength could be mobilized between the 

peak strength and the residual strength. Tumbull and Hvorslev (1967) 

discussed the problem of progressive failure, referring to 

nonhomogeneous stress distribution and local overstressing as reported 

by Bjerrum and Bishop. 

Duncan and Dunlop (1969) modelled the effects of initial lateral 

stresses on the stresses within a slope. Using a plane strain 

formulation of the finite element method, they analyzed a homogeneous, 

linear, elastic, isotropic material and proposed that the stress 

conditions in a slope after excavation are strongly influenced by the 

initial horizontal stress (Ko). It was concluded that for high Ko value 

large shear stresses might develop at some points within a slope even 

though the factor of safety was greater than one, and the existence of 



www.manaraa.com

29 

high horizontal stresses In heavily overconsolidated clays and 

clayshales Increases the probability of progressive failure (Duncan and 

Dunlop, 1969). Through oedometer tests, it has been shown that Ko 

unloading causes shear failure of the specimen, and shearing strains 

associated with further unloading reduced the shearing resistance of the 

material along the shear surface (Yudbhir, 1969). A theoretical model 
* 

to study the effect of horizontal stress release on progressive failure 

had been proposed (Christian and Whitman, 1969). They considered a 

single layer bound to a rigid base with elastic, plastic, and strain 

softening behavior for the bonding between the layer and the base. It 

was found that the smaller the factor of safety with respect to the 

residual strength, the greater the length of the failure surface. Even 

for slopes with a high factor of safety with respect to the residual 

strength, due to the release of initial stress by erosion or cutting, 

there is a possibility of propagation of a failure surface (Christian 

and Whitman, 1969). 

By th2 studies of the long-term creep characteristics of 

overconsolidated London clay and normally consolidated Pisa clay under 

drained conditions, Bishop and Lovenbury (1969) found that long-term 

loading does not necessarily lead to substantial strength reductions. 

This suggests that there may be no path to the residual strength by 

passing through the peak strength (Eigenbrod, 1972). This concept is 

important when later dealing with the creep mechanism. James (1970) 

analyzed over 50 case histories, most of them are overconsolidated clays 
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and clayshales, which include London clay, Oxford clay. Lias clay. 

Cretaceous clay, and several clayshales. First-time, slides failed with 

c' = 0 and = <f>'peak' while reactivated, slides failed at reduced . 

The results of the investigations of repeated slides showed that a 

reduction in friction resistance happens only after very large movements 

of the order of several feet. Also unless deformations are localized 

along the interface between two different layers, the strains would be 

too small for strength to approach the residual (James, 1970). 

Skempton (1970) discussed first-time slides in overconsolidated 

clays and described the post peak changes in strength comprising two 

successive stages: (1) dilatancy and the opening of fissures leading to 

increases in water content and culminating in a drop in strength to the 

fully softened value, at which stage there is a softened shear zone with 

numerous discontinuous shears, (2) development of principal shears of 

appreciable length, some of which eventually link together and form a 

continuous shear such that the residual strength is reached along the 

entire slip surface. 

A nonuniform mobilization of strength from peak to residual along 

the slip surface might occur for a first-time slide (Bishop, 1971). 

However, from the results obtained in ring shear apparatus, he concluded 

that residual strength in clay can only be reached after very large 

strain. 

A new approach based on fracture mechanics concepts considers a 

planar slip surface to be a crack (Palmer and Rice, 1973). This concept 

was applied to a slip surface by starting from a step or cut in a long 



www.manaraa.com

31 

slope. Based on the energy balance, they proposed a theoretical model 

to calculate the shear band length, which appears particularly pertinent 

to overconsolidated clays and clayshales. 

Vaughan and Walbancke (1973) observed that the pore water 

pressures may be significantly below equilibrium values for relatively 

long time periods after cutting of the stiff, fissured overconsolidated 

clay slopes. Chandler and Skempton (1974) suggested that many long term 

failures were attributed to long term pore water pressure equilibration 

effects. They also observed that c' = 0 for analysis of long term 

slides in these clays is conservative, whereas the use of peak strength 

measured in the laboratory is unsafe. Eigenbrod (1975) presented a 

finite difference method for analysis of pore water pressure 

equilibration based on two dimensional consolidation theory. He 

observed that for many slopes that the time for pore water pressure 

equilibration is of the same magnitude as the times to failure. Based 

on the field evidence in the brown London clay proposed that the main 

reason for the delayed failure in cutting slope is due to a very slow 

rate of pore water pressure equilibration which is pertinent to first-

time slides. 

Chowdhury (1976) investigated the influence of i n  s i tu  stress on 

the stability of natural slopes by using the limit equilibrium approach. 

He proposed that the factor of safety depends on the in situ stress and 

varies in a significant way with the inclination of the failure surface. 

Based on the concepts of the residual strength (Skempton, 1964) and 
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creep (Haefeli, 1965), Nelson and Thompson (1977) derived a theoretical 

equation to describe the relationship between creep, peak strength, post 

peak behavior, and progressive failure. 

Tavenas and Leroueil (1977, 1981) proposed the concepts of limit 

and critical state to represent cut and natural slopes, in which the 

rate of pore water pressure dissipation and the creep behavior may be 

assumed identical. They also suggested no fundamental difference in the 

behavior and failure of man-made and natural slopes (Tavenas and 

Leroueil, 1981). Leonards (1980) postulated that the time to failure is 

a direct function of the slope height and the slope inclination for 

London clay slopes. Osaimi and Clough (1979) had attempted to determine 

the variations of total and effective stresses during the excavation as 

well as with time and showed the high concentration of shear stresses 

near the toe of the slope as well as the influence of the initial 

stress. They also evidenced the important rotations of the principal 

stress axes which develop during the excavation. 

Ter-Stepanian (1980) proposed that the creep in slopes should not 

be treated as a continuous process, nor does it proceed uniformly, 

because of seasonal changes caused by fluctuations or periodical 

accelerations due to drawdown of ground water. Hungr (1981) reviewed 

available evidence and concluded that continuous creep is sustained at 

steady rates without change in applied or resisting faces exists only in 

the surficial layers of soil. At depth, only a decaying creep was 

measured. A sustained deep-seated creep in soils occurred only on 

failure generated shear zones or in material that was approaching 
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failure (Hungr, 1981). Savage and Chleborad (1982) used a viscoplastic 

model to measure velocity profile in creeping landslides, which fits 

several field landslide cases. Morgenstern (1985) proposed that a more 

likely explanation of large landslides resides in the geometrical 

complexity which includes thickness, slope of slip surface, lateral 

restraint due to channelization, and a number of other factors that vary 

from place to place in all but the smallest and simplest landslides. 

For failure mechanisms, three strength reducing mechanisms will be 

discussed; (1) delayed failure, (2) progressive failure, and (3) creep. 

Delayed Failure 

Introduction 

Slope cutting or erosion cause unloading of the ground. If the 

soil permeability is low relative to the rate of excavation or erosion, 

the expansion of overconsolidated clays and clayshales under partially 

or undrained conditions leads to pore water pressure reductions (Bishop 

and Henkel, 1953). The pore water pressures due to unloading are 

negative with respect to the final equilibrium conditions as shown in 

Figure 1, these negative excess pore water pressures tend to equalize 

until steady seepage conditions are reached (Eigenbrod, 1975). The 

average effective stress in the slope will decrease as the negative 

excess pore water pressure dissipated. In the long term this reduction 

of the average effective stress may lead the slope to failure 

(Eigenbrod, 1975). 

The delayed failures of slope cut in overconsolidated clays have 
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been investigated for many years (de Lory, 1957, Henkel, 1957, Skempton, 

1948, 1964, 1970, 1977, 1985, James, 1970, 1971, Vaughan and Walbancke, 

1973, Eigenbrod, 1972, 1975, Tavenas and Leroueil, 1981, Rulon and 

Freeze, 1985). Delayed failures may include all processes that 

contribute to a reduction of shear strength with time (Morgenstern, 

1977). The most common factors are pore water pressure equilibration 

and strain softening, which will lead to a reduction in shear strength 

from peak to the fully softened strength, c = 0, •' = <j>peak 

(Morgenstern, 1977). TTie time of delayed failure varies from years to 

decades (Skempton, 1977). 

Development of research program and questions studied 

The initial stage in Terzaghi's stress relief, cracking and ground 

softening process is mainly due to a destruction of the original clay 

structure by swelling, Skempton's softening process is caused by 

dilatancy during straining and particle orientation along minor shear 

(Eigenbrod, 1972). Skempton's softening process therefore is not 

dependent on the presence of fissures or joints as Terzaghi's, even 

though both softening processes will become similar eventually 

(Eigenbrod, 1972). 

At the end of the softening processes, the shear strength of the 

soil will drop from the peak to fully softened strength as long as no 

continuous shear plane is formed. A residual strength is that which 

develops only after very large displacements along a shear plane (James, 

1970, Skempton, 1970). 
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The rate of softening is influenced by the type of clay and the 

climatic conditions. Quigley et al. (1971) observed that swelling clays 

of accelerated soil softening and caused failure of several slopes only 

4 to 8 years after construction. Climatic conditions affect the process 

of weathering, including physical disintegration and chemical 

decomposition. This also can cause complete destruction of the clay 

structure and loss of strength. The softening by physical 

disintegration such as freezing-thawing is generally restricted to 

relatively shallow depth below the ground surface, and it usually occurs 

in temperate and cold climates (Eigenbrod, 1972). However, the 

softening by chemical decomposition can reach much larger depths, more 

than 20 feet in temperate climates (Eigenbrod, 1972). 

Thus, if strain softening can cause the shear strength drops from 

peak to a fully softened strength, strength may continue to drop from a 

fully softened to residual state if very large displacements develop or 

occur in a reactivated slide. However, for analysis of delayed failure 

of a first-time slide the fully softened shear strength is the more 

appropriate. 

Pore water pressure equilibration has been investigated extensively 

(Bishop and Henkel, 1953, Peterson, 1954, Lutton and Banks, 1970, 

Vaughan and Walbancke, 1973, Eigenbrod, 1975, Walbancke, 1975, Skempton, 

1977, Tavenas and Leroueil, 1981, Koppula and Morgenstern, 1984, Rulon 

and Freeze, 1985). Due to improvements in piezometer installations, 

negative excess pore water pressure can be observed in the field. It is 

possible to analyze the mechanisms of pore water pressure changes due to 
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excavation of a slope with the presently available techniques and to 

compare the analytical results with field observations. 

Kankare (1969) investigated the slope at Kimola Canal, Finland. 

The slope is in highly to slightly overconsolidated clays. During the 

excavation of the canal, the piezometers recorded a rapid drop of pore 

water pressures, and the lowest values were observed when the excavation 

was finished. Equilibration of pore water pressures was reached 

approximately 6 months later. 

Lutton and Banks (1970) reviewed previous records in studies of the 

slopes along the Panama Canal, then geological, field, and Isbcratcry 

investigations were undertaken and the stability of the slopes was 

analyzed. Stiff fissured clays of the Cucaracha formation in that 

region contains an abundance of fractured and highly slickensided 

montmorillonite-rich clay making it unstable. It was found that deep 

piezometers below the depth of active sliding indicated pore water 

pressure below the canal water level, suggesting that negative pore 

water pressure may still exist 60 years after canal excavation (Lutton 

and Banks, 1970). Many cuts in London clay failed about 20 to 60 years 

after they had been excavated (James, 1970, Skempton, 1970). Based on 

this observation, Vaughan and Walbancke (1973) suggested that failure of 

cuts in London clay may be delayed primarily by the rate of pore water 

pressure equilibration. They reported that in other overconsolidated 

clays, the delayed failure of cut slopes may also be controlled by pore 

water pressure equilibration, and this should be considered before other 
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mechanisms such as decrease in drained strength with time are 

postulated. But they are not sure that rapid equilibration may occur 

due to fissures and discontinuities which may increase permeability and 

shorten the time for the equilibration of pore water pressure. 

In a numerical analysis based on the Koppula's two-dimensional 

consolidation program (Koppula, 1970) which assumes that consolidation 

and swelling follow the same theory, Eigenbrod (1975) calculated the 

pore water pressure changes due to excavation of a slope, and the 

subsequent dissipation of negative excess pore pressures. The 

analytical results of these changes due to unloading of a slope agree 

well with pore water pressure measurements. He further suggested that 

pore water pressure after excavation can be predicted analytically in 

homogeneous materials, and that the time for full dissipation is of the 

same order of magnitude as the time between excavation and failure 

(Eigenbrod, 1975). 

Based on the measurement of pore water pressure in London clay 

cuttings, Walbancke (1975) proposed that pore water pressure 

equilibration after excavation of a slope is on the same time scale as 

delayed failure and is probably a primary cause. She further suggested 

that the rate of pore water pressure equilibration is a function of the 

permeability gradient within a clay layer and of the boundary pressures. 

Skempton (1977) had summarized researches on first-time slides in 

cuttings in the brown London clay. According to field piezometer 

observation, he indicated that the main reason for the delayed failure 

is a very slow rate of pore water pressure equilibration, despite the 
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fissures of the clay. It was also observed that when the average pore 

water pressure ratio tJj reaches 0.25 to 0.35, the slide will occur. The 

average pore water pressure ratio Ty which is defined (Bishop, 1960) as 

average value of along the slip surface, and = T„h/Tz 

where Ty, = unit weight of water 

T = unit weight of clay 

h = piezometric height 

z = the sliding depth 

With ongoing natural slope erosion, pore water pressures probably 

will never attain equilibrium. Peterson (1954) made this observation in 

river valleys excavated by natural erosion processes in Bearpaw shale. 

Koppula (1970) analyzed this process and showed that unloading by river 

erosion that cut into thick impervious clay shales should cause negative 

pore water pressure still to exist. A theoretical model of "The 

consolidation of soil in two-dimensions and with moving boundaries" was 

used in this case (Koppula, 1970). Hutchinson (1969) reported that pore 

water pressures are below sea level for the coastal slopes in England, 

in which the low water pressures in the slope have to be referred to the 

unloading during the initial slide. Tavenas and Leroueil (1981) 

proposed that no fundamental difference of negative pore water pressure 

equilibration in the behavior and failure of man-made and natural 

slopes. 

Based on Terzaghi's classical consolidation theory, a mathematical 

model to describe the behavior of a fully saturated sediment subjected 
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to uniformly eroding load was proposed (Koppula, 1983, Koppula and 

Morgenstem, 1984). This theoretical model can analyze simultaneous 

generation and dissipation of negative pore pressures. Even the free 

water is made available at the top, substantial negative pore pressures 

are likely to persist in the residual mass, even close to the eroded 

suface (Koppula, 1983, Koppula and Morgenstem, 1984). Rulon and Freeze 

(1985) used a finite element model to simulate two-dimensional, 

saturated-unsaturated, steady state flow through layered slopes, in 

which the pore water pressure distribution and the distribution of 

multiple seepage faces are strongly dependent on the position of the 

impeding layers and their hydraulic properties such as the magnitude of 

the hydraulic conductivity contrast between adjacent geologic units. In 

same cases, negative pore water pressure in the unsaturated wedges still 

exists. This phenomenon has also been verified by laboratory test 

(Rulon and Freeze, 1985). 

The softening process of delayed failure was first proposed by 

Terzaghi (1936). Skempton (1948, 1970) assumed that the drained 

strength of clay decrease with time, in which the effect of pore 

pressure has not been considered. Eigenbrod (1972) postulated that this 

softening process and weathering is the first stage of progressive 

failure. However, traditional definition of progressive failure is that 

very large displacement are generally necessary to develop residual 

strength along a continuous surface (Bjerrum, 1967, Skempton, 1964, 

1970, and James, 1971). For the first-time slides investigated by 

Skempton (1970), only minor deformation is needed to drop the strength 
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from peak to fully softened. Therefore, we can define the softening 

process is independent or only a beginning step of progressive failure. 

The relationship between softening process of delayed failure with 

strain softening of progressive failure has always been somewhat obscure 

(Morgenstem, 1977). Terzaghi (1936) and Skempton (1970) have defined 

the mechanism, but experimental data are not abundant (Morgenstem, 

1977). The result of softening is that the soil strength should drop 

from peak to fully softened. 

For negative pore water pressure equilibration, there have several 

theoretical models to simulate the field situation due to slope 

excavation or natural erosion (Eigenbrod, 1972, 1975, Vaughan and 

Walbancke, 1973, Walbancke, 1975, Osaimi and Clough, 1979, Tavenas and 

Leroueil, 1981, Koppula, 1983, Chandler, 1984a, 1984b, Koppula and 

Morgenstem, 1984). 

No experimental data exist to discuss the relationship between 

softing process and negative pore water pressure equilibration. 

Chandler (1984b) postulated that the procedure between these two should 

be as followings: 

After excavation, negative pore water pressure will occur in the 

slope and the void ratio of the clay will be low. When negative pore 

water pressure equilibration is completed within the slope and that 

shear stress is low, there will be an increase in the void ratio of the 

clay, a process that eventually will take the soil to the "fully 

softened" state. Thus significant softening can't occur until negative 
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pore pressure dissipation within the slope is completed. The process of 

negative pore water pressure equilibration may be long compared with a 

simple softening process, so from long-term stability point, the 

negative pore pressure equilibration will be a dominant process, 

especially for first-time slide. However, some exceptional cases still 

exist such as weathered Upper Lias clay, in which the variability 

resulting from weathering and periglacial brecciation is too great for a 

systematic pattern of negative pore water pressure equilibration to be 

apparent (Chandler, 1984b). Also, the softening process may be the 

controlling mechanism for a shallow-depth slide. 

Rate of pore water pressure equilibration 

A slope may fail either as a consequence of the development of 

positive excess pore water pressures or due to the dissipation of 

negative pore water pressure (Chowdhury, 1978). The former is related 

to embankment construction while the later is related to slope cutting, 

slope erosion, and other man-made behavior. Excess pore water pressures 

have a direct influence on the short-term and long-term stability. 

Especially at the end of the construction when soil is undrained, the 

negative pore water pressure is important for slope cutting and natural 

slope stability. The variation of pore water pressure responsible for 

changes in the stresses, which will affect their stability. 

Positive pore water pressure occurs below the water table. For 

point A located at depth h below the water table, the positive pore 

water pressure is equal to u = hT„ 
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where Ty, is the unit weight of the water. The height h is the 

piezometric head at the point of observation, and can be positive or 

negative. If the point of observation is located below the water table, 

the pore water pressure is positive. If the point of observation is 

above the water table, the equilibrium static pore water pressure is 

negative. 

The value of effective stress will be larger than the total stress. 

This kind of negative pore water pressure will temporarily help to 

stabilize the soil masses, as apparent cohesion. The reason for using 

"apparent" is because it disappears on saturation (Aitchinson and 

Donald, 1956). Vegetation can maintain a permanently desiccated slope 

such that negative pore water pressure may be permanent (Blight, 1963). 

Other mechanisms of negative pore water pressure also exist for 

overconsolidated clays and clayshales at fully saturated condition, such 

as: (1) shearing stage of Borehole Shear Test (Holm, 1985), (2) 

multiple seepage faces on layered slopes (Rulon and Freeze, 1985), (3) 

slope cutting and valley formation due to fluvial erosion in the 

geologic time scale (Koppula and Morgenstern, 1984). The reason for the 

occurrence of negative pore water pressure in shearing of Borehole Shear 

Test is believed to be dilatancy (Nelson and Siu, 1971). The hypothesis 

regarding the cause of dilatancy are (1) particle reorientation, (2) 

liberation of stored internal energy, (3) changes in interparticle 

electrical forces, (4) physical interaction between hydrated ions, and 

(5) interlocking between particle (Holm, 1985). The time precess for 

the occurrence of negative pore water pressure in shearing of Borehole 
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Shear Test can be measured in seconds to minutes. For slope cutting, 

the process often can be measured in years to decades, while for 

multiple seepage faces on layered slopes, slope cutting, valley 

formation, and dredging due to fluvial erosion, time is on a geological 

scale (Koppula and Morgenstem, 1984, Rulon and Freeze, 1985). Although 

the last glacial ice retreated over 10,000 years during the Pleistocene 

period, the weight of the ice cap caused the soil to become 

overconsolidated and elastically rebound, when the ice retreated. 

However, the elastically rebound is slow and is not complete even to the 

present day. The erosion of natural slopes and the downcutting of the 

river valleys are usually sufficient slow and the unloading so small 

compared to glacial unloading that the dissipation of these negative 

pore water pressures occurs at the same rate as they are produced 

(Tavenas and Leroueil, 1981); but that part of the negative pore water 

pressure produced by retreat of glacial ice may still be locked inside 

the slope such that the slope is stable. 

Theoretically pore water pressure distribution can be calculated by 

means of stress analysis and by numerical methods. Wilson (1963) 

calculated the total stress changes due to excavation of a slope by a 

finite element analysis using a computer program by considering the 

governing in situ soil parameters, such as Ko, A, Cg. Ko is the earth 

pressure coefficient at rest that is required to obtain the initial 

stress condition and the magnitude of the load being removed. A is 

Skempton's pore water pressure parameter, and Cg is the coefficient of 
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the swelling of the material. It appeared justified to consider a 

homogeneous, isotropic, elastic material in a semi-infinite half space 

(Eigenbrod, 1972, 1975). 

Duncan and Dunlop (1969) reported that in order to minimize the 

influence of the boundaries, several factors should be considered: (1) 

the positions of the lateral boundaries are sufficiently far removed 

from the slope so that they have a negligible effect on the stresses and 

displacements in the regions of the slope, (2) the nodal points 

adjoining these artificial boundaries are constrained to move vertically 

only, (3) the position of the rigid base influence the stress and 

displacements in the slope region, and (4) the nodal points adjoining 

the rigid base are constrained from either horizontal or vertical 

movement. In their original program, the stress changes are calculated 

by unloading in one single step, however, this is not the real 

situation. Clough and Duncan (1970) analyzed unloading by single-step 

and multi-step and observed that the results of the two analyses are 

nearly identical except for the elements immediately adjacent to the 

final surface of excavation. The effective stresses around an 

excavation may depend on the water pressures (Chowdhury, 1978). 

A two-dimensional finite element solutions is shown in Figure 4 by 

Duncan and Dunlop (1969) and Dunlop and Duncan (1970). It is shown that 

the distribution of pore water pressure is greatly influenced by the Ko 

value. Vaughan and Walbancke (1973) proposed that the change in pore 

pressure due to excavation can be estimated by 

Au = TAh (1) 
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where Ah is the depth of clay removed from above the point. 

Equation (1) is derived from Skempton's (1954) equation 

Au = A03 + A(Aoi - A03) (2) 

and finite element analysis had been proposed and shown (Duncan and 

Dunlop, 1969, Dunlop and Duncan, 1970) that for the central part of a 

slope, A01-AG3 due to excavation is small and 

A03 = TAh (3) 

From this, the equation (1) was derived. 

Based on Au = TAh, the one-dimensional solution proposed by Vaughan 

and Walbancke (1973) is shown in Figure 5. This is similar with the 

two-dimensional finite element solutions under the central portion of 

the slope (Duncan and Dunlop, 1969, Dunlop and Duncan, 1970). The 

results calculated from Au = TAh (Walbancke, 1975) is reasonably closed 

to the field observation (Kwan, 1971, Kankare, 1969) under the central 

portion of the slope. However, the equation Au = TAh is modelled based 

only on vertical unloading will overestimate the pore water pressure 

changes at the base of the excavation and does not hold for very steep 

slope cuts. Furthermore, it is not valid at the crest of a cutting, in 

which pore water pressure is reduced mainly on horizontal unloading 

(Walbancke, 1975). Kwan (1971) proposed Au = 0.75 TAZ under the base 

which is based on the field observation of the Welland cut. The 

equation Au = TAh is valid for short-term undrained situation. For 

long-term drainage occurs, pore water pressure is a function of the 

coefficient of swelling, time period, and boundary conditions. The 
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coefficient of swelling is correlated to the rate of swelling which is 

accompanied by a reduction in strength and failure that therefore may be 

delayed by the rate at which swelling can occur. In early stages, the 

equilibration rate of excavated slopes in clay is comparable with the 

rates calculated from laboratory values of Cg measured on large samples 

(Walbancke, 1975). 
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Figure 4. End of construction pore water pressure in a 1 on 1.5 cutting 
slope with various Ko value (after Duncan and Dunlop, 1969) 
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Figure 5. End of construction pore pressure in a 1 on 1.5 cutting 
slope (after Vaughan and Walbancke, 1973) 
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Elgenbrod (1972, 1975) calculated the time for equalization of 

excess pore water pressure Au using a two-dimensional consolidation 

program which assumed that consolidation and swelling follow the same 

theory (Koppula, 1970) as mentioned previously. The equation governing 

the two-dimensional dissipation of excess pore water pressure under 

plane strain conditions which is written in a dimensionless form 

â ug/ax̂  + â ug/ayZ = aug/a-t 

where Ug = excess pore water pressure at a point (X, Y) 

t = Cg * t/Ĥ  = time factor, Cg = coefficient of swelling 

H = height of the slope 

t = time since the beginning of dissipation 

X = x/H, and Y = y/H 

The equation was solved by Koppula (1970) and the computer program set 

up (Eigenbrod, 1975). The boundary condition is assumed as that no 

drainage is specified along the base of the slope and vertical boundary 

is considered far away from the excavated face (Duncan and Dunlop, 1969, 

Koppula, 1970). Eigenbrod (1975) found that the pore water pressure 

distribution after the first time steps indicated that variations in 

initial pore water pressures due to different assumptions of Ko are 

equalized at very early stages of dissipation, and are little reflected 

during the later stages of pore pressure equilibration. However, there 

are no data from field observations to support this point. The 

influences of slope height on time for dissipation tg as well as the 

influence of the coefficient of swelling Cg were evaluated 0.33Ĥ  and 
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can be expressed as tg = 0.33H^/Cg 

where H = the height of the slope 

Cg = coeffieient of swelling 

0.33 = time factor for full pore water pressure equilibration 

The time for full equilibration of pore water pressures is greatly 

influenced by Cg values, but is slightly influenced by slope height 

(Eigenbrod, 1975). Although this theoretical model of pore water 

pressure equilibration is fitted for sufficiently homogeneous soil, more 

field observations and the in situ coefficient of swelling in natural 

slopes are needed. 

Based on field piezometer observation, Skempton (1977) reported 

that the pore water pressures had reached a state of equilibrium after 

125 years. In striking contrast the pore pressures of the west side, 

only about one-half of the equilibrium values was reached after 19 

years. No essential difference between the two sides other than of 

excavation time existed. It is reported that the long term value of 

could be taken between 0.25 and 0.35 (Figure 6), and 0.3 could be used 

for back-analysis in the absence of reliable piezometric data at any 

given site (Skempton. 1977). However, this observation had been 

selected to exclude cut of unusually shallow depth; in these it would be 

expected that equilibration would be achieved on a shorter time scale. 

Slips in the zone of seasonal variation also have been excluded. The 

value of average pore water pressure may be influenced by the size of 

the landslide and the weathering condition as shown in Figure 7. The 

Lias clay is more weathered and the size of the landslide is smaller 
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(Chandler, 1984a). The significantly high pore water pressures (higher 

than Skempton's report) were observed in some of the London clay 

landslides at Heme Bay (Chandler, 1984a). Meanwhile, based on the back 

calculation of Linnan's (1986) landslide case of Pennsylvanian shale in 

Des Moines, the average value is 0.37 which is not far off compared 

with Skempton's observation. Skempton (1977) also suggested that the 

fissures of the clay had little affect on in situ permeability of the 

clay slope after excavation when compared with values measured in the 

laboratory on small undisturbed samples. 

The behavior of equilibration of negative pore water pressure was 

also used to predict swelling process (Chandler, 1984b). Stress paths 

can be used to illustrate the effects of swelling on strength and 

delayed failure for heavily overconsolidated clays as shown in Figure 8. 

With rapid (undrained) excavation to different depths of cut, the 

elements follow paths A to E, D, etc. After this excavation, soil 

swells with corresponding paths E to E', D to D', etc, the length of 

this portion of the stress path being related to the time period 

involved. If the excavation is shallow (path A-E-E'), swelling may be 

completed without failure occurring. If the excavation is deeper, 

failure may occur as long term pore water pressures are attained (A-D-

D'), while path A-C-C is intermediate term before swelling is complete. 

If excavation is continued, then a short term failure path A-B is 

followed with no swelling (Chandler, 1984b). 
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Figure 8. Stress paths for a typical soil element on the potential 
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Tavenas and Leroueil (1977, 1981) proposed that the concepts of 

limit and critical state are best suited to represent the behavior of a 

wide variety of natural clays, which can be explained in terms of a 

rheological time dependent limit state of the clay wherein the strength 

of the clay ultimately decays to the critical state. Time dependent 

limit states exist shown as y in Figure 9. If the slope was excavated 

rapidly in undrained condition up to failure, the effective stress path 

would be such as Of̂ . The rate of displacement of the limit state curve 

from (yi) to (yf), describes the creep characteristics of the clay. 

Paths such as UiDi or U2D2 vary with the negative pore water pressure 

dissipation process. Failure of the element occurs when its stress path 

intersects the limit state corresponding to the strain rate of the 

element. The rate of pore water pressure dissipation and the creep 

behavior may be assumed identical, in which it will be influenced by the 
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drainage boundary conditions of the clay slope, the coefficient of 

swelling, and the fluctuations of the water table (Tavenas and Leroueil, 

1981). 
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Figure 9. Time dependent limit state (after Tavenas and Leroueil, 1981) 

Based on Terzaghi's classical consolidation theory, Koppula and 

Morgenstern (1984) derived an expression for negative pore water 

pressure as a function of depth and time. For a semi-infinite, 

homogeneous, fully saturated soil mass of finite thickness being 

eroded/excavated from the top at an arbitrary rate, this phenomenon may 

be viewed as opposite to the case of sedimentation in which additional 

soil layers are added at the top (Koppula and Morgenstern, 1984). 

Gibson (1958) presented the following equation for sedimentation 

C * (3̂ u/3ẑ ) = 8u/3t - (d/dt)(Ao) 

where C = coefficient of consolidation of the soil 

u = excess pore water pressure at time t 
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T = unit weight of the soil 

h = thickness of soil deposited in time t 

z = height meaured from ground surface 

Koppula and Morgenstern (1984) proposed that for the case of soil that 

is eroded/excavated from the top, the term Ao may be changed to -Ao of 

Gibson's equation, while C is substituted by Cg (coefficient of swelling 

of the soil). 

A solution for the equation based on changing boundary and initial 

conditions was derived, in which it is assumed that the top of the 

eroded soil mass is free to drain and that at that point the negative 

pore water pressure is always zero (Koppula and Morgenstern, 1984). The 

negative pore water pressure u (z, t) normalized with respect to the 

weight of soil removed at any time is a function of (1) the depth of 

soil normalized in terms of z/h, (2) the location of the bottom 

impervious boundary expressed as H/h, depth factor, and (3) the ratio of 

the rate of soil removal to the swelling characteristics of the soil, 

called the erosion-swelling ratio, = m̂ t/Cg. Based on these, figures 

(Figures 10, 11) for different soil removal rate were derived including 

oermeable or impermeable bases, depth factor, and normalized depth. 

From theses figures, the negative pore pressure can be predicted. It is 

seen that dissipation of negative pore water pressure is slow for fast 

rates of soil removal or for slowly swelling soils or both. On the 

other hand, the dissipation of negative pore water pressure is faster 
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for slower rates of soil removal or fast swelling soils (Koppula and 

Morgenstem, 1984). In both cases, it is shown that appreciable 

negative pore water pressure occurs and there is a substantial potential 

for the soil to swell even after considerable time has elapsed after 

excavation. 

For the prediction of the pore water pressure in cuts and slopes at 

equilibrium, the characteristics of different theories will be 

discussed: (1) finite element analysis (Wilson, 1963, Duncan and Dunlop, 

1969, Dunlop and Duncan, 1970), and numerical analysis (Vaughan and 

Walbancke, 1973, Walbancke, 1975), which assume Skempton's equation for 

unloading (1954) is valid for limited parts of the slope, and assumes a 

short-term undrained situation, (2) concepts analysis (Tavenas and 

Leroueil, 1981, Chandler, 1984b), based on time dependent limit state 

and the process of negative pore water pressure equilibration 

respectively. These concepts are qualitative and no quantitative 

approaches are available at the present time, (3) observation method 

(Skempton, 1977), used for back-analysis, and a good indicator of slope 

stability in relation to the pore pressure, and (4) a numerical analysis 

method (Koppula and Morgenstem, 1984) based on sedimentation or 

consolidation analysis. By utilizing several data bases such as the 

rate of soil removal, the swelling potential of the soil mass, the ratio 

of the thickness of soil layer removed to its original thickness, and 

the nature of the bottom boundary, negative pore water pressures can be 

predicted. 
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Progressive Failure 

Introduction 

Bishop (1971) had suggested that it may not be possible to 

distinguish between progressive failure and softening on the basis of 

back-analysis alone. Both mechanisms describe that strength will 

decrease with time. However, the softening process is characterized by 

the "fully softened state of strength" (Skempton, 1970) with c' = 0 and 

= •'peak the governing parameters, in which the uniform 

mobilization of a fully softened strength is reached along the failure 

surface (Skempton, 1970). Progressive failure is characterized by 

residual strength with c' = 0 and (j>' =4"'residual the governing 

parameters (Skempton, 1964, Bjerrum, 1967), in which large displacement 

must be mobilized in order to drop the shear strength from the peak to 

the residual value (Skempton, 1970, James, 1971). Morgenstern (1977) 

defined this process as "the non-uniform mobilization of shear strength 

along a potential slip surface". It can developed as: In the vicinity 

of the toe of the slope or where excessive deformations have occurred, 

localized points are overstressed and exceed the clay peak strength, 

whereupon the strength of the clay is reduced due to the strain 

softening characteristics of the clay. This action places additional 

stress at adjacent points, causing the peak strength of these points to 

be passed, so that conditions are created for the zone of failure to 

increase. Thus, failure may progress within a soil mass from one end of 

a slip to the other, the net result being that the average shear 

strength available at failure is less than the peak strength. The 
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possible behavior of progressive failure has been recognized for some 

time (Taylor, 1948, Skempton, 1964, Peck, 1967, Turnbull and Hvorslev, 

1967, Bishop, 1971). It can be applied to problems of bearing capacity 

and earth pressure as well as slope stability (Morgenstern, 1977). The 

definition of "progressive failure" is not the same as "progressive 

slide", in that progressive failure spreads in the up-slope direction 

which is opposite to its motion, and is called a "retrogressive slide" 

while the progressive slide spreads in a down-slope direction which is 

the same as its motion (Kjellman, 1955, Chowdhury, 1978). 

Development of research program and questions studied 

The strength reducing mechanism has been discussed by Terzaghi 

(1936) and Skempton (1948) as mentioned previously. Also, Cassel 

(1948) and Binger (1948) compared laboratory strengths and field 

strength in several England clay and Panama Canal clay, they found that 

the failed strength of clay in the field occurred much lower than ever 

measured by laboratory tests. 

Prior to mid-1950s, slope analyses were confined to a total stress 

approach using cohesive strengths alone. Several researchers (Henkel, 

1955, de Lory, 1957) suggested that for a long term design of slopes the 

effective stress method should be used which assumed the strength decay 

is confined to the effective cohesion parameter c', and the parameter 

was assumed constant. In the early 1960s more case histories were 

reported in overconsolidated clays and clayshales which could not be 

explained with the conventional effective stress approach. That 
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relatively small movement may reduce the strength while the angle of 

shearing resistance (*') can be decreased permanently due to strain was 

suggested from field observations (Gould, 1960) as well as laboratory 

tests (Borowicka, 1963). Schmertmann and Osterberg (1960) observed from 

triaxial shear tests that, strength due to friction between particles is 

more stable than cohesion. The phenomenon of the residual strengch was 

formerly postulated and defined by Skerapton (1964). 

Bjerrum (1967) suggested that the mechanism for the progressive 

failure is the result of the release of recoverable strain energy on 

weathering in overconsolidated clays. The weathering under his 

definition includes physical disintegration, chemical changes, and 

decomposition of the mineral. During physical disintegration, the 

structure of the clay is disturbed by a breakdown of the bonds, and the 

locked-in recoverable strain energy will be liberated causing the clay 

to expand, resulting in water content increase and shear strength 

decrease. The total amount of expansion depends on the amount of the 

strain energy in the clay. If the bonds are weak, most of the strain 

energy is dissipated during unloading, and the effect of disintegration 

will be small. If the bonds are strong, only a small portion of the 

strain energy is lost during unloading, and the expansion will be large. 

Also, the amount of strain energy stored in a clay under load is 

dependent on the type of clay minerals, the greater the content of 

active clay minerals, the greater the recoverable strain energy, which 

may lead to nonuniform swelling accompanied by local nonuniform strains. 
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Progressively, these local strains may be large enough to produce local 

shear failure and formation of cracks and fissures (Bjerrura, 1967). 

Based on the concept that the shaded area bound by the loading and 

unloading branches of the curve represents strain energy (Sealye and 

Smith, 1952), Brooker (1968) ran a series of large scale consolidation 

test on several different kinds of overconsolidated clays and 

clayshales. His quantitative data support Bjerrum's (1967) strain 

energy hypothesis. Brooker (1968) then further proposed that there have 

relationships between strain energy, overconsolidation ratio, and 

coefficient of lateral stress at rest (Ko). Based mainly on local 

overstressing that due to local overstress, Bishop (1967) proposed that 

a zone of plastic equilibrium is formed in a slope before general 

failure take place. Also, a change in loading conditions or pore water 

pressures will lead to a progressive extension of the failure zone along 

the potential slip surface, then the shearing resistance within the zone 

will drop from the peak to the residual strength. It had been suggested 

that in a slope the stress distribution is nonhomogeneous and the 

strength mobilized during failure must be in a nonhomogeneous way 

(Conlon, 1966). According to Conlon's test results, Peck (1967) 

proposed that failure may also initiate from the crest of a slope which 

did not consist with the widely held belief about failure always 

initiating and progressing from the toe. Turnbull and Hvorslev (1967) 

discussed the progressive failure referring to nonhomogeneous stress 

distribution and local overstressing as described by Bjerrum (1967) and 

Bishop (1967). 
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Based on finite element analysis, Duncan and Dunlop (1969) studied 

the effects of initial lateral stresses around a slope, and found that 

the stress conditions in a slope after excavation were strongly 

influenced by Ko value, they proposed that the existence of high 

horizontal stresses in heavily overconsolidated clays and clayshales 

increase the probability of progressive failure. Yudbhir (1969) showed 

that Ko-unloading causes shear failure of the specimen in oedometer 

tests, and concluded that the release of horizontal stresses in 

overconsolidated clays to be a dominant factor. Yudbhir further 

suggested the Ko effect a dominant factor in progressive failure. Using 

a theoretical model. Christian and Whitman (1969) studied the effect of 

horizontal stress release on pregressive failure. Even for slopes with 

a high factor of safety with respect to the residual strength, due to 

the release of initial stress by erosion or cutting, there is a 

possibility of propagation of a failure surface. 

Two stages of strength reduction can be distinguished, a fully 

softened condition and the residual condition. At fully softened 

strength, only a complex of minor shears such as the Riedel thrust and 

displacement shears exist. In order to drop the fully softened to 

residual strength. Particle reorientation will have occurred along 

theses minor shears to form a smooth continuous surface (Skempton, 

1970). The fully softened state of strength is the same strength at the 

"critical state" in terms of critical state soil mechanics (Roscoe et 

al., 1958, Schofield and Wroth, 1968). 
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James (1970, 1971) suggested that very large movements (in the 

order of several feet) are prerequisite for strength reductions in a 

slope from peak to residual. He further pointed out that unless the 

lateral movements are localized to one thin seam, lateral movement due 

to high lateral stresses would be insufficient to drop the angle of 

shearing resistance of the clay to the residual condition. Therefore, 

in homogeneous clay slopes such as London clay, progressive failure is 

unlikely, except at the brown/blue clay interface. 

Bishop (1971) proposed a brittleness index Ig in relation to 

progressive failure of overconsolidated clays, the index being defined 

as: I g = (Sp — Sj~)/ Sp 

where Sp = peak strength of soil 

Sp = residual strength of soil 

The higher the Ig value, the higher the possibility of progressive 

failure. 

Palmer and Rice (1973) developed a shear band concept on the basis 

of fracture mechanics considering a planar slip surface in a given 

material to be a crack. They considered the case of a slip surface 

starting from a step or cut in a long slope, in which the growth of slip 

surface is a progressive phenomenon. Based on the energy balance, they 

proposed a theoretical model to calculate the shear band length no 

matter whether the shear stress is between the peak and residual 

strengths or below the residual strengths. The factor of safety is 

defined as a ratio of the energy release during unit advance of the 

shear band and the energy driving the shear band (Palmer and Rice, 
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1973). Rice and Simons (1976) compared basic cases and found the 

results favorably close with Palmer and Rice's (1973). Rice and Simons 

(1976) had extended their analysis to consider some of the time-

dependent aspects with pore water pressure redistribution. Chowdhury 

(1977, 1978) also proposed a shear band model, and for flat slopes the 

results agree closely with the Palmer and Rice's (1973) energy approach. 

Theoretical models of progressive failure 

Different concepts and definitions of progressive failure are in 

use. Although different progressive failure mechanisms had been studied 

extensively (Terzaghi, 1936, Skempton, 1948, 1964, 1970, Bjerrum, 1967, 

Bishop, 1967, 1971, Peck, 1967, Christian and Whitman, 1969, Yudbhir, 

1969, Eigenbrod, 1972, Palmer and Rice, 1973, Morgenstern, 1977, 

Chowdhury, 1977, 1978), various opinions still exist for the conditions 

such as (1) which mechanism is most suitable, (2) what kind of 

geological condition is suitable for progressive failure, (3) where the 

crack initiates, and (4) what is the influence of initial stress and 

strain energy. In order to consolidate and solve these problems, the 

followings will be discussed: (A) mechanism, (B) geological condition, 

(C) crack initiation, and (D) effects of initial conditions. 

(A) Mechanism: During the progressive failure process, large 

displacements are needed in order to drop the strength from peak to a 

fully softened and residual condition, such displacements definitely 

being larger than those needed to open fissures that represent the 

starting condition for the Terzaghi mechanism. James (1970) showed a 
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relationship between field strain and reduction in (Figure 12). For 

example, in a 30 ft highway cut in London clay, a slip movement of 

around 7 ft (field strain = 0.25) would be needed to lower <l>' by 6°, 

from the peak to the residual values («I»'peak = 20°, 4'residual = 14° for 

London clay). Based on the back-analysis of field failures strength 

parameters for either first-time slide or reactivated slides can be 

calculated out (Skempton, 1970, James, 1970). While Skempton (1970) 

postulated the uniform mobilization of a fully softened strength along 

the failure surface, many others (Bishop, 1967, 1971, Peck, 1967, 

Turnbull and Hvorslev, 1967, James, 1971, Morgenstern, 1977, Chowdhury, 

1978) proposed that progressive failure is due to the nonuniform 

mobilization of shear strength along a potential slip surface, which may 

occur due to local overstress, large deformation, or changes in loading 

conditions or pore pressures. This failure process can't be interpreted 

by softening or negative pore water pressure equilibration. 

Several theoretical progressive failure model have been proposed by 

different researchers (Christian and Whitman, 1969, Palmer and Rice, 

1973, Rice and Simons, 1976, Chowdhury, 1977, 1978). Christian and 

Whitman (1969) developed a one-dimensional mathematical model of a 

single layer bonded to a rigid base, and the material is assumed to be 

elastic, plastic, and strain softening as Figure 13. Based on 

simplified brittle nature of shear stress-displacement curve and 

equilibrium consideration of an infinitesimal element, they integrate 

the differential equation and suggest that first yield occurs (with no 
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relative displacement until a critical shear stress is reached) when 

P/Sp > (E/Kh}i/= 

The extent of the failure surface is; 

L/h = {(-P/Sp) + (E/Kh)i/2}(Sp,/Sr,) 

The factor of safety against first yield: 

F * S = (2sin 6/Ko)(E/Kh)i/2(FSp - 1) 

where P = initial stress 

Sp = peak strength 

Sp = residual strength 

L = location 

6 = displacement 

K = slope of the peak line 

E = modulus of the soil 

h = thickness of the soil layer 

Spi = reduced peak strength obtained by deducting gravitational shear 

component (rhsin B) from Sp 

Sj.1 = reduced residual strength obtained by deducting gravitational 

shear component (rhsin 6) from Sj. 

6 = angle of inclination 

Ko = the coefficient of lateral stress at rest 

FSo = the factor of safety for peak strength 

This model uses parameters other than those considered in the 

conventional stability analysis of slopes, and indicates that factors 

such as initial stress may have significant effect on whether or not a 
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Figure 12. Relationship between movement of slip and loss in strength 
(after James, 1970) 
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Theoretical progressive failure model: (a) Simple 
progressive failure model in brittle strain softening soil, 
(b) Shear stress-displacement curve as assumed for the model 
(after Christian and Whitman, 1969) 
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failure will start. Also, this analysis is based on a simplified 

stress-strain curve which shows an abrupt drop in strength from peak to 

residual and no displacement between peak and residual strength. 

However, this behavior is not realistic for real soils which need large 

displacements in order to drop the strength to residual state (James, 

1970, Skempton, 1970). Furthermore, the analysis implies failure takes 

place along the interface between the soil layer and rigid base and this 

is not valid for rotational type slides. On the other hand, Skempton 

(1970) proposed that when the strength drops to the residual state, 

particle re-orientation will have occurred and a smoothly continuous 

principal shear surface will have developed, so at this stage the 

stress-strain relationship in the failure zone may be close to that 

proposed by Christian and Whitman (1969). Therefore, the theoretical 

model proposed by Christian and Whitman (1969) is still a good approach 

but with some restrictions. 

The model of Palmer and Rice (1973) assumes that only two shear 

strengths are mobilized along a potential failure, a residual value 

along the shear band and a peak value outside the shear band. However, 

this model can not represent all field conditions (Chowdhury, 1978). 

Chowdhury (1977) proposed a theoretical model of nonuniform shear 

stress on a band, and thus the shear stress along the band can be 

arbitrarily chosen between the peak and residual values. When (1) the 

material is brittle, (2) the relative displacement in the post peak 

range is zero, and (3) gravitational shear stress along a shear band is 



www.manaraa.com

67 

less than residual shear strength (as in very flat slopes), Chowdhury's 

(1977) model will be close to Christian and Whitman's (1969) model. 

Neither Palmer and Rice (1973) nor Chowdhury (1977) considered the 

effect of initial stress. Borland et al. (1977) studied a ground 

movement caused by a deep excavation in Oxford clay of England. Based 

on the field data from horizontal extensometers, and from inclinometers, 

they observed that the growth pattern of a slip surface fit those shear 

band concepts. 

(B) Geological condition: Progressive failure in geological 

materials have been reported by many researchers, including granular 

materials (Taylor, 1948, Roscoe et al., 1958, Rowe, 1962), quick clays 

(Crawford, 1968, Conlon, 1966, Bjerrum et al., 1969), and rocks 

(Terzaghi, 1962, Haefeli, 1965). Haefeli (1965) reported progressive 

failure in snow slabs. Also, Cavounidis and Sotiropoulos (1980) 

reported progressive failure in Marl. For overconsolidated clays and 

clayshales, the strain softening behavior had been discussed extensively 

(Terzaghi, 1936, Skempton, 1948, 1964, 1970, Bjerrum, 1967, Bishop, 

1967, 1971, Bishop et al., 1971, James, 1970, 1971, Lo, 1970, Eigenbrod, 

1972, Lo and Lee, 1973, Morgenstern, 1977, Chandler, 1984a). 

James (1971) pointed out that considerable displacement is needed 

in order to drop the strength from peak to residual state. It has been 

suggested that unless deformations are localized along one thin layer or 

at the interface between two somewhat different layers such as brown and 

blue London clay strains would be insufficient to approach the residual 

state (James, 1971, Eigenbrod, 1972, Morgenstern, 1977). In other 
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words, progressive failure Is unlikely In homogeneous clay slopes. 

Typically, London clay falls into the homogeneous category, except at 

the brown and blue interface (James, 1971). Through back-analysis, 

James (1970, 1971) and Skempton (1970, 1977) proposed that the failures 

in London clay the first-time slides, in which only fully softened 

strength is mobilized. 

(C) Crack initiation: It often has been assumed that failure in 

natural and cut slopes begins at the toe or the bottom of a potential 

surface, based on stress concentration likely being highest at the toe 

(Chowdhury, 1978). However, Bishop (1967) postulated that under drained 

conditions progressive failure initiates from both ends of the rupture 

surface inwards. Peck (1967) discussed Conlon's test results (1966) 

with respect to progressive failure on overconsolidated clays, and 

suggested that strength is to be mobilized in a nonhomogeneous way since 

the stress distribution is nonhomogeneous. Under constant loading the 

ratio of maximum shear stress to normal stress has a high value at the 

ends and low value in the middle of a slope. When long-term drained 

conditions are approached, the shear strength increases with effective 

normal stress. In the interior of the slope, there is a greater depth 

of material above points on the slip surface, so the ratio of shear 

strength to normal stress is higher at both ends, the likelihood of 

failure starting in the middle is remote under such conditions 

(Chowdhury, 1978). At low stress levels peak shear strength will be 

reached after smaller displacements than at higher stresses. A tension 
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crack at the crest of a slope was suggested as a consequence of the 

initiation of shear failure (Barton, 1972). Hoek and Bray (1977) also 

viewed that cracks are an evidence of the initiation of progressive 

failure. Therefore, failure is most likely to progress from one or both 

ends of a potential slip surface. However, based on field observations 

with inclinometers, de Beer (1967, 1969) suggested that rupture may 

progress predominantly from the toe towards the top of the slope. James 

(1970) ran a series of analyses compare the stability of slopes in 

London clay, Oxford clay, and Lias clay. In these analyses, the factor 

of safety between two different circumstances without a tension crack or 

with a tension crack were compared. The tension crack depth ranged from 

5 ft to 18 ft, about 25% to 30% the depth of the slip. James found that 

in most cases no significant difference exists with or without the 

tension crack. The stress distribution following the excavation had 

been analyzed (Duncan and Dunlop, 1969, Clough and Duncan, 1970, Lo and 

Lee, 1973) and showed that the stress concentrated in the toe area, and 

this overstressed zone will propagate towards the interior and upslope 

as time passes. Romani et al. (1972) used a variational calculus 

approach to analyze the effect of a crack on the stability of the slope; 

they found that the factor of safety against slope instability varies 

considerably with the degree of development of cracks. Full crack 

development yields minimum values with progression from toe to crest, 

while partial development of the crack is safer and gives a direction 

from crest to toe. Based on field observations of Leda clays, Mitchell 

and Eden (1972) reported that creep rates are maximum at the toe of the 
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slope. All of these phenomena suggest that initiation of cracks for 

overconsolidated clays and clayshales starts from the toe area. 

However, for normally consolidated clays, the cracks initiate from the 

crest area (Duncan and Dunlop, 1969). 

The rate of crack propagation may be related to the strain 

softening behavior, or the rate of strength loss with time. Little 

information exists regarding the rate of decrease of drained strength 

with time in the field. Skempton and Hutchinson (1969) suggested that 

the rate of strength loss is 3.5% per log cycle of time for remolded 

Weald clay. For undisturbed London clay. Bishop and Lovenbury (1969) 

observed the value was of the order of 4,8% per log cycle in long-term 

drained creep tests. Based on the finite element analysis, Lo and Lee 

(1973) proposed that a rate of decrease of drained strength of 6% per 

log cycle of time will be consistent with field failure records. 

For shear bands. Palmer and Rice (1973) proposed that the rate of 

propagation should be controlled by (1) dilationally induced suctions, 

and (2) bulk diffusion. Rice (1973) considered some typical laboratory 

creep data and estimated it would require a 10% to 15% increase in 

average shear stress to increase the velocity of propagation from an 

order of 3 ft per year to an order of 3 ft per day. None of the above 

proposals consider time-dependent aspects of pore water pressure 

distribution. Rice and Simons (1976) have extended Palmer and Rice's 

model, in which they considered time effects and the stabilization of 

shear faults by coupled deformation-diffusion effects, so that speed, 
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slipping length, and permeability could be related to creep movements. 

Although the results of Rice and Simons are interesting, so far only 

qualitative data have been presented. 

(D) Effects of initial conditions: Initial stress conditions in 

overconsolidated clays and clayshales may contribute to the slope 

stability problem (Duncan and Dunlop, 1969, Dunlop and Duncan, 1970, 

Henkel, 1970, Lo and Lee, 1973, Chowdhury, 1976, 1977, 1978, 

Schmertmann, 1985). It has been reported that the horizontal stresses 

in heavily overconsolidated clays and clayshales may exceed the 

overburden pressure by 50%, or even more in some cases (Peterson, 1954). 

Duncan and Dunlop (1969), Clough and Duncan (1970), and Lo and Lee 

(1973) used finite element analysis to study the effects of initial 

stress following excavation, the stress distribution being influenced by 

the initial stress as shown in Figure 4. The higher the initial stress, 

the large the area of the overstressed zone (Lo and Lee, 1973). The 

ratio of lateral to axial effective stress (the coeffieient of earth 

pressure at rest, Ko) increases with increasing degree of 

overconsolidation under conditions of no lateral strain in laboratory 

tests (Kjellman 1936, Bishop and Henkel, 1953, and Brooker and Ireland, 

1965). Brooker and Ireland (1965) defined relationships between the 

coefficient of earth pressure at rest and the overconsolidation ratio 

and plasticity index as shown in Figure 14. Bjerrum (1967) hypothesized 

that in highly plastic clays, diagenetic bonds may form which inhibit 

the development of high lateral pressures during unloading, and result 

in considerable strain energy being stored in these clays after 
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unloading. Stored strain energy increased with increasing plasticity 

index as shown in Table 3. This supports Bjerrum's strain energy 

hypothesis quantitatively (Brooker, 1968). The greater the content of 

recoverable strain energy, the greater the danger of progressive 

failure. The release of strain energy is related to the diagenetic 

bonds, the critical will be occurred if a clayshale with strong 

diagenetic bonds is subjected to the various agents of weathering which 

results in a energetic swelling and initiating of progressive failure 

(Bjerrum, 1967). It can be shown that the higher the recoverable strain 

energy, the higher the tendency for swelling upon weathering. It can be 

concluded that high initial lateral stresses could result in large shear 

stresses at the base of an excavated slope as well as increased 

possibility of progressive failure (Bjerrum, 1967, Duncan and Dunlop, 

1969, Dunlop and Duncan, 1970, Lo and Lee, 1973). 

Relationship between delayed failure and progressive failure 

There are no well-documented case histories of first-time slides in 

heavily overconsolidated clays and clayshales to indicate that 

progressive failure plays a dominant role in stability (Morgenstern, 

1977). To distinguish between delayed failure and progressive failure 

therefore is important. First, delayed failure may be mainly due to 

negative pore water pressure equilibration, and softening may have an 

important role in weathered clay at shallow depth. The process of 

failure may be like this: At the end of the negative pore water pressure 

equilibration, the softening process follows and a first-time slide 
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Table 3. Characteristics of several overconsolidated clays and 
clayshales (after Brooker, 1968) 

Mineralogy 
LL PL PI <0.002mm Activity Mont. Illite Strain energy 
% % % % % (in.-lb/in.3) 

Chicago 28 18 10 36 0.29 5 40 85 

Goose Lake 
Flour 

32 16 16 31 0.50 - 15 85 

Weald clay 41 21 20 39 0.53 10 15 84 

London clay 64 26 38 64 0.60 15 35 100 

Bearpaw 101 23 78 59 1.53 60 - 130 
shale 

3.0 POINTS A TO F INTERPOLATED FROM 
HENORON'S DATA 

. OVERCONSOLIDATION RATIO-OCR 
525 

32 

20 30 
PLASTICITY 

40 
PLASTICITY INDEX, I 

50 60 70 80 

Figure 14. Variation of Kq values with plasticity index for several 
values of overconsolidation ratio (after Brooker and Ireland, 
1965) 
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occurs. However, if softening continues with large displacements, prior 

to sliding, a progressive failure occurs. On the basis of back-analysis 

alone, it may not be possible to distinguish between progressive failure 

and softening (Bishop, 1971). Table 4 lists some comparisons between 

these two failures. For a first-time slide, fully softened strength is 

mobilized along the whole failure surface in which time-dependent 

weakening of clay soils is only in cohesion (Skempton, 1970). For a 

progressive failure there is nonuniform mobilization of shear strength 

along a potential slip surface, in which a frictional resistance is 

reduced to the residual state. A short-term or immediate failure of an 

excavated slope could be considered either a simultaneous one or 

progressive one depending on the mechanism involved (Chowdhury, 1978). 

Delayed failure may result primarily from pore water pressure 

equilibration after a long period of time (Eigenbrod, 1972, 1975, 

Vaughan and Walbancke, 1973, Walbancke, 1975, Morgenstern, 1977, 

Skempton, 1977), and progressive failure from local overstressing with 

large deformations or changes in the loading conditions (Skempton, 1964, 

Bjerrum, 1967, Bishop, 1967, 1971, Eigenbrod, 1972, Morgenstern, 1977). 

Creep 

Introduction 

Creep is a widespread phenomenon, its action occurring at different 

scales ranging from creep of atom-size flow units in a deformed crystal, 

to secondary consolidation movements of soil grains, to creep of 

continent size tectonic plates (Ter-Stepanian, 1980). Creep in slope 
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Table 4. Relationship between long-term delayed and progressive 
failure (adapted from Skerapton, 1964, 1970, James, 1970, 
1971, Morgenstem, 1977) 

Slide 
Type 

Slide 
Mechanism 

Geological 
Condition 

Strength Displacements 
Parameters 

First-time 
slide 

Delayed 
failure 

Mostly 
homogeneous 
soil 

c ' =0, • =*peak 
(fully softened 
state) 

Small 

Reactivated 
slide 

Progressive 
failure 

Mostly 
nonhomogeneous 
or layered soil 

c'=0, *'=*residual 
(residual state) 

Large 
(in the 
order 
of feet 

can be defined as the very slow downward and outward movement of a mass 

of earth slopes, involving soil, rock, ice, or a combination materials, 

without the formation of a continuous rupture surface, which usually 

precedes in landslides (Emery, 1979, Ter-Stepanian, 1980). All slopes 

are subject to creep, in many cases so small as to be virtually 

unmeasureable, up to reported measured rates of mass rock creep ranging 

from 1.78 cm per year to 20 cm per day (duller, 1964). 

Terzaghi (1953) distinguished creep movements as seasonal, or 

mantle creep, and continuous or mass creep. Seasonal creep proceeds in 

the upper layers only resulting from a number of seasonal processes 

including expansion and contraction due to temperature changes, wetting 

and drying, frost cycles, animal burrowing and treading, and plant root 

activity (Terzaghi, 1953, Hungr, 1981). For surficial movement, the 

vertical distribution of the rate of movement is cumulative upwards, 
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with a maximum at the surface and weakening with depth (Kirkby, 1967). 

The seasonal movement is considerably more important In periglacial 

regions where strong freeze-thaw cycles and inhibition of drainage by 

permafrost often occur (Hungr, 1981). Slow seasonal flowage of the 

active layer above frozen ground is termed solifluction or gelifluction. 

Continuous creep is produced below the depth of seasonal 

variations, and is the result of sustained gravitational shear stresses 

unaided by other agents (Terzaghi, 1953, Hungr, 1981). Usually 

continuous creep occurs on a large scale. Six different types of 

geological setting of continuous deep-seated creep have been described: 

(1) valleyward squeezing of soft layers overlain by rigid caps, (2) 

distortion and buckling of rigid inclined layers on soft bases, (3) 

localized distortion in uniform material, (4) incremental movements on 

rough-surface inclined discontinuities, (5) deep-seated bending, 

folding, and plastic flow of rocks on slopes, and (6) bulging, 

spreading, and fracturing of steep slopes (Radbruch-Hall, 1979). 

Varnes (1978) defines two corresponding classes, "bedrock flow" and 

"soil creep", in which the classification did not acknowledge the 

presence of deep-seated creep in soils (Hungr, 1981). Creep may proceed 

continuously under normal gravitational stresses, or occur in increments 

in response to environmental factors such as seasonal high levels of the 

ground water table (Ter-Stepanian, 1980). In drained laboratory tests 

on clays, continuing long-term creep is known to take place at stresses 

that are only a fraction of their peak strength. There exists a 

critical value of stress, below which creep may take place but creep 
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failure will not occur. At stresses greater than the critical stress, 

creep failure will eventually occur (Haefeli, 1965, Singh and Mitchell, 

1968, 1969). 

Development of research program and questions studied 

Sharpe (1938) defined creep as the slow downslope movement of 

superficial soil or rock debris, at a rate that usually is 

imperceptible. Later, he defined creep as the ground movement in top 

layers produced by thermal expansion and contraction, swelling and 

shrinking, freezing and thawing, and other seasonal processes (Sharpe 

and Dosch, 1942). Since Sharpe's definition, the concept of creep as an 

independent type of mass movement on slopes has gained general 

recognition. 

Terzaghi (1950) was the first to show a connection between creep 

and landslides as shown in Figure 15, a diagram illustrating the 

relationship between creep, sliding, and safety factor with time. A 

similar movement proceeding at an imperceptible rate is called creep. 

At point a, a change in the equilibrium of the slope takes place, a 

slide producing agent begins to act followed by gradual accleration. At 

point b, the acceleration reaches a maximum and rapid movement occurs 

which is called failure. At point c, a new steady post-failure stage 

begins. A simple landslide may behave according to this scheme 

(Terzaghi, 1950, Ter-Stepanian, 1980, Hungr, 1981). However, complex 

landslides may act neither uniformly nor steadily, and the horizontal 
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Shdt-prvducmç egtrit 
starti to act 

Figure 15. Diagram illustrating the ground movements which precede a 
landslide and the changes of factor of safety (after 
Terzaghi, 1950) 

displacements prior to the catastrophic Vajont rock slide appear as a 

complex sequence of several S-shaped curves, as shown in Figure 16 

(Huiler, 1964). Terzaghi (1953) distinguished between the seasonal 

creep and continuous creep. He defined creep as an imperceptibly slow 

movement continuously downward and outward, in which the creep movement 

is essentially viscous under shear stresses sufficient to produce 

permanent deformation but too small to produce rapid shear failure as in 

a landslide. Creep rate is dependent on shear stress intensity and 

rheological properties of soils, and is subjected to changes caused by 
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landslide-producing agents (Goldstein and Ter-Stepanian, 1957). 
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Figure 16. Variation of horizontal displacement with time of Vajont 
slide (after duller, 1964) 

Terzaghi (1962) distinguished between surficial rock falls and deep 

seated rock slides, and emphasized that the gradual development of local 

joint systems is responsible for slides representing combined effects of 

an Increase in shearing stresses and a slow creep deformation of the 

rock acted upon by these stresses. Types of deep creep of slopes in 

rock masses had been described as: (1) translational creep which occurs 

on long slopes containing a network of structural discontinuities that 

comprise one or more of the following types: faults, bedding, joints, 

fissures, and dipping, (2) rotational creep which occurs on short slopes 

with homogeneous rocks without bedding, lamination, or steeply dipping 

beds of rocks, and (3) general creep in the case of complicated 

geological structures (Ter-Stepanian, 1966). Hutchinson (1968) defined 
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creep as any very slow permanent deformation of a slope regardless of 

the mechanism causing it, and distinguished types of creep as; (1) 

shallow, predominantly seasonal creep, (2) deep seated continuous creep 

which occurs in all soils and rocks subjected to shear stresses 

exceeding a critical value, and (3) progressive creep which occurs when 

the creep movement is approaching failure. Zaruba and Mend (1969) 

defined creep as slow, long-term deformations of slopes which usually 

occur within a thick zone consisting of a system of partial sliding 

planes and possessing the character of a viscous movement. Also, creep 

has been defined as the geological long-term movements of nonincreasing 

velocity without well-defined sliding surfaces, classified as rock 

creep, talus creep, and soil creep (Nemcok et al., 1972). 

Varnes (1978) classified creep as: (1) bedrock flow, and (2) soil 

creep; his creep definition has a meaning similar to that used in 

mechanics of materials, with deformation under constant stress. Some of 

the creep deformation may be recoverable over a period of time upon 

release of the stress, but generally most of it is not. He further 

pointed out that creep movements can occur in many kinds of topples, 

slides, spreads, and flows. Also, the term creep does not need to be 

restricted to slow, spatially continuous deformation. Radbruch-Hall 

(1979) used term "mass rock creep" to describe of deep-seated large 

gravitational creep of rock masses on slopes. 

Above are the existing definitions of creep on slopes. For the 

application of a "creep" concept to long-term stability of 
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overconsolidated clays and clayshales, the knowledge of the potential 

time-dependent behavior is essential. Due to difficulties in 

representing the continuum and in relating constitutive relationships 

determined from idealized laboratory tests and conditions to the actual 

site conditions, the analysis of time-dependent slope behavior is very 

complicated (Campanella and Vaid, 1974, Emery, 1979). Most research on 

creep behavior and the development of constitutive relationships for 

clays and clayshales are via laboratory creep tests, as shown in Figure 

17a (Singh, 1966). 

Generally, creep behavior of soils is studied under a constant 

deviator stress (01-03). For curve I, a very small shearing stress as 

characterized by D, is applied, and the soil is deformed instantaneously 

upon application of the load, followed by a state of increasing 

deformation at a decreasing rate and finally reaching a state of 

equilibrium. For curve II, a larger load is applied, the range of loads 

for which this behavior is observed being typical of many engineering 

problems. Curve II is characterized by four stages, as shown in Figure 

17b. The boundaries of curve II are often quite arbitrary and a 

cohesive soil may not exhibit all of the stages represented (Singh and 

Mitchell, 1968, Campanella and Vaid, 1974, Emery, 1979). It can be 

interpreted as: (1) an instantaneous deflection after load application 

(stage I); followed another stage with a period of increasing 

deformation at a decreasing rate which has been called "primary" or 

"transient" creep (stage II); then followed a region of continuing 

deformation at an almost constant rate, this region has been called 
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"secondary" creep (stage III); this nearly constant creep rate period 

eventually leads into stage IV, characterized by an increasing rate and 

subsquent failure. It appears that true steady state creep does not 

exist (Singh, 1966, Emery, 1979). 
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Figure 17. Typical creep behavior for cohesive soils observed in 
laboratory tests: (a) Typical creep curve, (b) Different 
stages of creep behavior (after Singh, 1966) 

In order to study the creep of geological and other materials, 

three general approaches have been adopted: the physico-chemical 

approach, the empirical approach, and the rheological approach (Hirst 

and Mitchell, 1968, Emery, 1979). In the physico-chemical or 

micromechanistic approach, creep behavior is related to processes on the 

molecular scale, based upon experimental evidence that creep involves 

thermally activated processes, and absolute reaction rate theory or rate 
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process theory has been used to study the creep of many materials. Rate 

process theory has been used to develop a strain rate equation for the 

creep of cohesive soil directly from considerations of micromechanistic 

behavior (Mitchell et al., 1968), which assume that the majority of 

creep experiments shows a behavior consistent with a thermally activated 

rate process. In soils, there are several studies on this subject 

(Christensen and Wu, 1964, Mitchell, 1964, Mitchell et al., 1968, Noble 

and Demirel, 1969, Andersland and Douglas, 1970, Erol et al., 1977). 

Typically, the process is that creep rates depend on the temperature by 

exponential factors -AH/KT and 6, where AH is the activation enthalpy or 

bond energy, K is the Boltzman constant, T is absolute temperature, and 

6 is a the stress factor. This strain rate equation may not be 

adequately developed for use in analysis procedures and the various 

parameters are difficult to determine with conventional laboratory 

equipment, but it provides valuable insight into the bonding mechanisms 

that contribute to shear resistance and creep movements (Hirst and 

Mitchell, 1966, Emery, 1979). Nelson and Thompson (1974) also point out 

that a physico-chemical approach may insure physical reasonableness of 

the creep laws utilized. 

In the empirical approach, various parameters such as strain and 

strain rate are measured experimentally as a function of time, stress 

and temperature under controlled conditions (Emery, 1979). Singh and 

Mitchell (1968, 1969) have developed a very generalized stress-strain-

time function for cohesive soils which is based on the study of creep 

curves for many cohesive soils over a range of sustained deviatoric 
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stresses: e = Aê D (ti/t)™ 

where e = the strain rate (axial or shear) at time t 

D = deviatoric or shear stress 

ti = unit time 

t = time 

A, a, and m = material constants 

This equation is applicable irrespective of whether the clays are 

undisturbed or remolded, wet or dry, normally consolidated or 

overconsolidated, or tested drained or undrained. A minimum of two 

creep tests is needed to establish the values of A, a, and m for a soil. 

The parameter A indicates the order of magnitude of the creep rate for 

the particular cohesive soil, and reflects the structure, composition 

and stress history. The parameter a indicates the stress level effect 

on creep rate and may reflects the number of bonds per unit area 

resisting the creep movement (Mitchell et al., 1968). The parameter m 

provides a measure of the creep potential: m < 1 for soil with strain 

softening behavior; m = 1 for soil with same strength before and after 

failure and m > 1 for soil with strain hardening behavior. The value of 

m is not unique for a given cohesive soil and depends on the 

consolidation history (Singh and Mitchell, 1969). It is critical to 

have A, a, and m parameters developed for the appropriate soil 

conditions and stress history anticipated in the field (Campanella and 

Vaid, 1974). 

For studying creep theoretically, the Theological model approach is 
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perhaps the best known method (Singh and Mitchell, 1968, Emery, 1979). 

To represent loading of an actual material, an idealized model is made 

up of linear or nonlinear springs, dashpots and sliders. Most of the 

models have linear spring elements with an elastic modulus; and dashpot 

elements may be linear with a coefficient of viscosity, or nonlinear 

with the viscous flow obeying a hyperbolic law based on rate process 

theory or an exponential law based on empirical studies (Emery, 1979). 

It is now generally agreed that the creep of most soils is nonlinear so 

linear rheological models and superposition represent an ideal condition 

only (Hirst and Mitchell, 1968). However, Emery (1979) pointed out that 

linear rheological models still can provide useful approximations for 

the deformation and stress behavior to be examined qualitatively, and 

that this information is particularly valuable when laboratory test 

results are not available, and the material properties must be assumed 

or developed from field measurements. Among several rheological models, 

the Bingham flow model is appropriately suited to describe the 

relationship between shear stress and the rate of shear (Ter-Stepanian, 

1963, Haefeli, 1965). A graphic representation of Bingham flow is shown 

in Figure 18. It can be observed that there is no flow until a given 

stress reach to; after that there is a curve portion which leads to a 

linear portion similar to those of ideal plastic flow. A point (tg) 

called a yield stress will be intersected at shearing stress ordinate 

when the linear portion of the curve is extrapolated downward. Unlike 

the behavior of snow or ice, the creep of the soil begins only after a 

yield stress is exceeded (Haefeli, 1965). Two kinds of creep are 
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classified with relation to this effect. If the shear stress is less 

than the yield stress, creep will produce a densification and 

consolidation of the material resulting in an increase of the strength 

of the soil. However, if the shear stress is larger than yield stress, 

creep will produce a gradual concentration of stresses and decrease the 

strength of the soil until it fails (Haefeli, 1965). Almost all of the 

creep relationships presented by the various investigators indicate that 

the creep rate is highly dependent upon the stress level in the soil or 

rock. The slope of the linear portion of the curve is usually 

denominated 1/n, where n is interpreted as the viscosity of the soil 

according to Theological theory. This viscosity coefficient is 

important to identify the flow behavior of the different materials. It 

also influences the magnitude of the creeping velocity (Savage and 

Chleborad, 1982). Under the Bingham flow model, total deformation and 

the rate of deformation are increased with water content (Haefeli, 1953, 

Millan, 1969). 

Nelson and Thompson (1977) have presented a theory of creep failure 

in overconsolidated clays, based on the interaction between the 

phenomena of creep, strain softening and time-dependent failures in such 

clays. They assumed that some critical strain exists at which point all 

of the internal bonds in the soil will have failed, and if a clay 

structure continues to creep when stressed below its residual strength, 

its peak strength continues to decrease with time. Based on Haefeli's 

creep concept (1965), they also derived an equation to determine the 
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time until failure of a slope, and proposed that crccp failure appears 

to extend from the crest of a slope of overconsolidated clay, which is 

opposite to the widely believed concept that failure starts from the toe 

area. 

Bingham 
1 ine 

Shear stress 

Figure 18. Bingham body behavior (after Haefeli, 1965) 

Theoretical creep models and slope failure predictions 

Seasonal creep is weaken with depth and the rate of movement is 

cumulative upwards, and vertical distribution is exponential with a 

maximum at the surface which may be used to explain the distribution of 

velocity with depth (Kirkby, 1967). 

For continuous, deep-seated creep, numerous attempts have been made 

to fit with theoretical models. Although there are different approaches 

such as fundamental (micromechanistic), empirical, finite element, and 
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Theological model approachs, most investigators have adopted some 

modification of the Bingham model as a Theological approach and used it 

to interpret the constitutive relationship (Singh and Mitchell, 1968, 

Emery, 1979, and Hungr, 1981). This is to consider that the soil will 

not have deformation while stressed to a shear stress level below yield 

stress, and then flow under high stress as a fluid of a constant 

viscosity. Several researchers assumed an infinite slope as the 

kinematic model to develope theoretical creep models (Ter-Stepanian, 

1963, Yen, 1969). 

These researchers proposed models of slow, steady creeping flow in 

landslides by considering the flow under gravity of a Bingham or 

viscoplastic substance based on the two dimensional Coulomb failure 

criterion. Ter-Stepanian (1963), and Yen (1969) analyzed and compared 

with actual field observations. Ter-Stepanian (1963) proposed a 

quantitative approach of deep creep movements in simple natural slopes 

by considering a zone of creep and its rates, in which yield stress T O  

is considered as the threshold stress. He distinguished types of depth 

creep as planar and rotational depth creep. For planar depth creep 

which takes place in nonhomogeneous soil, the creep rate is a maximum at 

the contact with the rigid stratum. The rate of the planar creep of 

slopes does not remain constant, but changes with variations in 

intensity of processes which lead to landslides. Seasonal fluctuations 

of pore water presure and the gradual increase of slope inclination due 

to tectonic uplift may cause alternation of the rate of creep. For 

rotational depth creep, which takes place in homogeneous cohesive soils, 
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he proposed that the creep zone is located in the middle of the slope, 

and the creep rate is a maximum in the middle of the slope. The rate of 

the rotational depth creep is maximum at the potential surface of 

sliding, and is influenced as the same factors as for planar depth 

creep. Ter-Stepanian's rotational depth model is opposite to the 

general belief that the initiation of the crack starts from the toe 

area. He applied his equations to a Caucasus coastal landslide, and 

pointed out that the profile of the downslope velocity is a parabola. 

Yen (1969) analyzed the same case as Ter-Stepanian did, the 

Caucasus coastal landslide, using his theory and a soil viscosity value 

back calculated done by Ter-Stepanian. Although both studies are based 

on the same constitutive relationship, the results are mutually 

inconsistent. Yen's (1969) model is based on the residual shear 

strength and assumes that soil flows viscously with no volume change 

during slope creep, and the slope is an infinite layer of homogeneous 

soil. For the creep zone, he assumed that the location of the maximum 

velocity is inversely proportional to the unit weight of the soil and 

the cosine function of the slope, and that the depth of the maximum 

velocity will be increased as the normal surcharge load along the slope 

increased, and decreased as the shearing surcharge load increased. For 

the slope without surcharge and at residual condition, the location of 

the maximum velocity is at the surface of the slope. Theses concepts 

can not explain the initiation of crack and the failure plane which 

usually is located under the slope, while not in the slope surface. 
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Bishop and Lovenbury (1969) concluded from long duration triaxial 

creep tests that time effects alone are not sufficient to reduce the 

strength of the London clay from peak to residual values. James (1970) 

and Lefebvre (1981) suggested that there is no path to the residual by 

passing the peak strength for overconsolidated clays. By contrast, the 

peak strength for soft clays is reduced significantly with time, 

especially for tests with very low reconsolidation pressures (Lefebvre, 

1981). Some "by-pass" of the peak strength may occur if there is 

movement along discontinuities within the slope, and under these 

circumstance c' may be considerably reduced (Skempton and Petley, 1967). 

However, if samples are sufficiently large to contain representative 

discontinuities, then the peak strength of the soil will not be 

affected. Meanwhile, based on Haefeli's concept (1965), Nelson and 

Thompson (1977) assumed that creep rate is constant with time, which can 

not reflect a real slope creep situation. They also proposed cracks 

initiating from the crest area based on finite element analysis, which 

is the opposite of the belief that cracks initiate from the toe area. 

The reason for this may be due to that pore water pressures and climatic 

effects are neglected in their analysis. Based on field observations in 

the Ottawa area, Mitchell and Eden (1972) proposed that creep rates are 

maximum at the toe of the slope, but the several models do not come out 

with these results (Ter-Stepanian, 1963, Yen, 1969, Nelson and Thompson, 

1977). 

Tavenas and Leroueil's concept (1981) of limit and critical state 

are best suited to represent the behavior of a wide variety of natural 
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clays. In this concept, volumetric and shear creep strains in an 

overconsolidated clay develop at a rate which increases as the applied 

stress gets closer to the limit state surface, and the accumulation of 

creep strains with time results in an apparent displacement of the limit 

state surface and the reduction of the peak strength envelop with time. 

They further postulated that creep behavior and the rate of pore 

pressure dissipation may be assumed identical, and there is no 

fundamental difference between the failure of natural slopes and the 

delayed failure of cut slopes in fissured clays, as in intact clays. 

Although the model seems to fit field conditions, so far no quantitative 

approach is available. Strain energy as a yield and creep criterion as 

proposed by Tavenas et al. (1979) may not be suitable for practical 

application. 

A three-dimensional Coulomb failure criterion for creep rate 

profiles of deep landslides was considered by Savage and Chleborad 

(1982). Their concept utilizes factors such as the elastic shear 

modulus, invariant of stress tensor, linear and nonlinear viscosity, 

cohesion and friction angle, and stress-strain relationship to develop 

constitutive equations. For a landslide model, the material, slope 

geometry and effects of pore water pressure are also considered. They 

proposed that for planar deep creep, the creep rate distribution is a 

parabola with a maximum in the yielding plane, not at the contact layer 

with a rigid plane, which is different from Ter-Stepanian's model 

(1963). This deep creep model is compared with the case histories 
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described by Ter-Stepanian (1963), Yen (1969), and to Chleborad's field 

results (1980). However, the Bingham viscosity is the most difficult 

parameter to measure independently in order to apply the model for depth 

creep. Also influencing the magnitude of the velocity is the change of 

the water table and the transfer of horizontal load (Hungr, 1981, Savage 

and Chleborad, 1982). 

Since Terzaghi (1950) pointed out that creep is the precedent of 

the landslide, many researches have been considered the possibility of 

predicting failure from prefailure creep movements. Besides the creep 

model proposed by Ter-Stepanian (1963), Yen (1969), and Savage and 

Chleborad (1982), others have tried to predict failure from pre-failure 

creep movements (Saito, 1965, 1969, 1980). Saito (1965) first proposed 

a method for predicting the time of occurrence of slope failure by means 

of steady state strain rate, and then later he extended his method of 

prediction to include the tertiary creep range. This method follows a 

characteristic pattern: (1) Slow or zero strain rates exist in a stable 

slope; (2) approaching failure is preceded by a sudden acceleration to a 

higher constant strain rate at some points; and (3) a new sudden 

acceleration brings about the failure. Saito correlated the accelerated 

pre-failure strain rate measured immediately after (2) and called the 

time period between (2) and (3) as "creep rupture life". However, 

sudden acceleration to a new strain rate generally does not appear in 

pre-failure records. Instead, the displacements and strains usually 

tend to increase gradually. The model may only apply to regional cases 

(Hungr, 1981). 
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Some difficulties still exist in the predictions such as: (1) the 

scale of acceleration required" to cause failure, and (2) the ability to 

isolate fluctuations of displacement caused by external agents but not 

leading to failure (Hungr, 1981). The scale of pre-failure velocities 

varies a lot. Mitchell and Eden (1972) observed that toe displacement 

rates in Leda clay slopes exceeding 4 cm/month led to failure, while 

other creep rates were also observed (Skempton and Hutchinson, 1969). 

The actual pattern of creep movement may be complicated due to 

environmental factors, as in the record of horizontal displacements 

prior to the catastrophic Vajont rock slide that appears as a sequence 

of three S-shaped curves (Muller, 1964). The first two periods of 

acceleration were due to raises of reservoir level, and can not be 

classified as "failure" in comparison with the final displacement of 400 

m. However, these acceleration may be superimposed and then accelerated 

the slope to failure. 

Relationships between creep, progressive failure, and delayed failure 

Since surficial creep is limited to a shallow layer, only deep 

creep will be discussed with regard to relationships of progressive 

failure and delayed failure. Terzaghi (1950) noted creep as the 

precedent of landslide; the creep rate is slow at creep stage and a 

sudden acceleration occurs at the failure stage. However, there are 

arguments about the mechanism behind this (Nelson and Thompson, 1977, 

Hungr, 1981, Morgenstern, 1985). The relationship between deep creep 

and progressive failure had been discussed (Haefeli, 1965, Ter-
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Stepanian, 1975, Nelson and Thompson, 1974, 1977, Morgenstem, 1977). 

Both relate to time-dependent behavior of soils. Creep is one of the 

most widespread phenomena which describes the deviatoric and volumetric 

strain rate exhibited by soils under constant stress, mainly from 

gravity. 

Progressive failure is the nonuniform mobilization of shear 

strength along a potential slip surface (Bishop, 1971, Morgenstem, 

1977). It occurs first in the vicinity of the toe of the slope or where 

excessive deformations have occurred. These overstressed points will 

exceed a clay peak strength and then place additional stress at adjacent 

points, the chain reaction of these processes dropping strength down to 

the residual strength. 

For creep, deformation is a result of sustained gravitational shear 

stresses and environmental factors such as changes of water table or 

tectonic movement, as well as excavation or cutting. There are several 

postulates in regard to creep rate: (1) creep rates decrease 

continuously with time, but vary exponentially with stress level 

(Goldstein et al., 1965, Bishop, 1967, Singh and Mitchell, 1968, Lohnes 

et al., 1972), (2) creep rates become essentially constant after a given 

time, but vary nonlinearly with stress (Haefeli, 1965, Nelson and 

Thompson, 1977), (3) creep rates depend on the rate of dissipation of 

the negative pore pressures after the end of excavation (Tavenas and 

Leroueil, 1981), and (4) deep creep on slopes should not be treated as a 

continuous process, nor does it proceed uniformly, being subject to 
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seasonal changes caused by fluctuations or periodical acclerations due 

to drawdown of water table. The conclusions of (1) and (2) above are 

all based on the laboratory tests, and do not include pore water 

pressure, while (3) and (4) above are better suited to interpret the 

creep rates of landslide practically. For progressive failure, most of 

the researchers concerned the changes in shear strength due to decrease 

of the parameters c or or the change of pore water pressure. 

However, shear band model did consider the rate of propagation (Rice and 

Simons, 1976). 

For creep zone, it is postulated that creep deformation is a 

continuous gradation between the stationary and the moving material, and 

is unassociated with the presence of a slip surface, but this still 

remains problematical (Skempton and Hutchinson, 1969, Hungr, 1981, 

Morgenstern, 1985). Hungr (1981) reviewed available evidence and 

concluded that at depth, only a decaying creep has been measured in 

response to specific equilibrium changes, and steady movements occur 

only in failure-generated zones or in material that is approaching 

failure. He further pointed out that some Theological models which 

utilize back-analysis of sustained time-dependent slow slope movement 

are not productive, the reason being that the rheological model does not 

consider the horizontal load transfer between adjacent sections of the 

moving mass. Morgenstern (1985) reported that no successful forecasts 

appear to have been made based on laboratory creep test data or on back-

calculated values, with the exception of one model (Savage and 

Chleborad, 1982) which utilized a three dimensional Coulomb failure 
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criterion and fit in field results (Chleborad, 1980), and some case 

histories (Ter-Stepanian 1963, Yen, 1969). In natural, evidences exists 

for creep phenomena, that may coexist with other failure mechanisms such 

as progressive failure. The creep cases used by Ter-Stepanian (1980), 

at the bridges over the Little Smoky river in Canada and the Landquart 

river in Switzerland, are due to river erosion at the toe area, and may 

be interpreted as progressive failures. Also, there is a single 

continuous shear zone in the Little Smoky river case (Thompson and 

Hayley, 1975), which is not consistent with some creep models. 

For progressive failure, Skempton (1964) proposed that fissures in 

the slope act as stress concentrators. Strain softening by dilatancy 

and the opening of fissures will drop the strength to a fully-softened 

stage with discontinuous shears. If there is further large deformation, 

at this stage particle re-orientation will have occurred, and a 

continuous principal shear or principal slip surface will form as the 

strength falls to residual. A width of principal slip surfaces ranging 

from 2 cm to 20 cm has been observed (Morgenstern and Tchalenko, 1967, 

Skempton and Petley, 1967). In most of landslide cases, failure without 

a principal slip surface is not a general phenomenon. 

For the initiation of cracking, there are three postulations about 

the start of the creep deformation, (1) deformation starts from the zone 

beneath the middle of the slope (Ter-Stepanian, 1980), (2) deformation 

starts from the crest area (Nelson and Thompson, 1977), and (3) a crack 

theoretically initiates from the toe area after excavation of 
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overconsolidated clays (Bjerrum, 1967, Duncan and Dunlop, 1969, James, 

1970, Bishop, 1971, Lo and Lee, 1973). Meanwhile, based on field 

inclinometer observations, cracks may progress predominantly from toe 

towards the crest of the slope (de Beer, 1967, 1969, Mitchell and Eden, 

1972). Field observations from Ter-Stepanian (1984) also showed that 

creep crack initiated from the toe of the slope due to road cutting. 

Strength parameters close to the residual strength are used in 

rheological models by creep researchers (Yen, 1969, Lohnes et al., 1972, 

Nelson and Thompson, 1974, 1977). These strength parameters will not be 

able to explain the first-time slide through back-analysis. First-time 

slides may occur due to negative pore pressure equilibration or 

softening, wherein the rate of strength lose is not constant. However, 

a creep model based on laboratory tests cannot simulate these field 

situations, a restriction that limits the rheological effect as used in 

a creep model. 

As mentioned previously, a creep model can not explain the first-

time slide through back-analysis. Nelson and Thompson (1974, 1977) used 

some failure cases of London clay to justify their strain-softening 

creep model, and found that failure stress is higher than residual 

strength. However, as Skempton (1977) pointed out, these failure cases 

are all first-time slides. From a geological stand point, first-time 

slides likely occurs mostly in homogeneous clay; while progressive 

failure likely occurs in a reactivated slide, mostly a nonhomogeneous 

soil, or along a geological discontinuity in the slope. 

Creep is a common phenomenon, for surficial creep can occur in 
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places resulting from seasonal processes. Deep creep can occur in some 

slopes as precedent foç a landslide, and the creep rate may be so slow 

as to be imperceptible. When environmental factors change, such as a 

rise of water table, natural erosion, river downcutting, or human 

activity such as loading on the slope or excavation, creep may 

accelerate to a landslide. In this way creep and progressive failure 

will have same meanings with regard to their processes: strength lose 

with time, and a rate subject to the environmental factors. 

The relationships among delayed failure, progressive failure, and 

creep thus can be focussed on as a difference in driving force, 

deformation, deformation rate, sliding zone, initiation of crack, 

geological soil conditions, and strength parameters. Table 5 lists 

factors related to the different failure mechanisms. 
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Table 5. Relationships between delayed failure, progressive failure, and creep 

Driving Force 

Deformation 

Deformation Rate 

Sliding Zone 

Initiation 
of Crack 

Slide Type 

Geological Soil 
Condition 

Strength 
Parameters 

Delayed Failure Progressive Failure Creep 

Negative pore water 
pressure equilibration 
or softening 

Small 

Various 

Yes 

Toe 

First-time slide 

Mostly homogeneous 

Fully softened 
strength 

Various environmental 
factors 

Large 

Various 

Yes 

Toe 

Reactivated slide 

Mostly nonhomogeneous 
or layered 

Residual strength 

Gravity 

Small to Large 

Decreasing, constant, 
or variable with time 

No 

Crest or central part 
of the slope 

Various 

Various 

Residual strength 
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PART II: EFFECT OF LATERAL STRESS ON SLOPE STABILITY ANALYSIS 
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At Rest Lateral Stress (Ko) with Stability of Stiff 

Overconsolidated Clays and Clayshales 

Introduction 

A knowledge of in s i tu  or  Initial stresses has been of interest to 

geotechnical engineers and engineering geologists for a long time, it 

has been recognized qualitatively for many decades that in situ stresses 

are important for analysis and design of strutted excavations, tunnels, 

underground openings, foundation bearing capacity and settlement, slope, 

retaining wall, pile, liquefaction potential, and etc. (Chowdhury, 1978 ,  

Schmertmann, 1985). The availability of a powerful and versatile 

numerical technique such as the finite element analysis for performing 

studies of stress deformation has led to a better understanding of the 

importance of initial ground stresses qualitatively and quantitatively. 

The vertical and horizontal effective stresses at any depth z 

beneath a level ground surface are: 

Oyt = Tz - uo 

®h' = Ko * Oy' 

where T = the average density of the overlying material 

uo = the pore water pressure at the point considered 

Ko = the coefficient of lateral stress at rest 

For normally consolidated soils K Q  lies between the limits 0 .3  and 0 .8  

(Terzaghi, 1925, Bishop, 1958), an approximate indication of the value 

of Ko for such materials may be obtained from the expression given by 

Jaky (1944) :  
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Ko = 1 - s in  *  

in which ̂  is the effective angle of shearing resistance. Based on a 

detailed experimental study, Brooker and Ireland (1965) proposed that 

for normally consolidated clay: 

Ko =  0 .95  -  s in  *  

These two equations (Jaky, 1944, Brooker and Ireland, 1965) are almost 

identical for practical purpose. Many values of the coefficient of 

lateral stress at rest are done in laboratory test which is valuable in 

understanding the development of lateral stresses during loading, 

unloading and reloading of a specimen of soil under conditions of no 

lateral strain. These measurements can't simulate other varied natural 

factors which influence in situ stresses such as soil structure, 

cementation between particles, weathering and secondary time effects 

associated with loading and unloading (Wroth, 1975). 

Kjellman (1936) conducted laboratory tests on sand and concluded 

that the value of K" increased with increasing overconsolidation ratio. 

Brooker and Ireland (1965) found that the value of Ko was governed by 

the stress history and the drained angle of shearing resistance. For 

remolded clays with high values of overconsolidation ratio, they 

measured values of Ko as high as 3. Mayne and Kulhawy (1982) reviewed 

laboratory data from over 170 different soils and proposed simple 

empirical methods for predicting Ko value for normally consolidated and 

overconsolidated soils. Their findings confirmed Brooker and Irelands' 

proposition that the value of Ko was influenced by the stress history 

and the drained angle of shearing resistance. 
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Due to the difficulties in laboratory tests to simulate the field 

test, the actual field measurement of Ko is becoming more attractive 

with a variety of recent field techniques which include hydraulic 

fracturing, Menard Pressuremeter, Self-Boring Pressuremeter, Gloetzl 

total stress cells, Marchetti Dilatometer, and Ko Stepped Blade (Bjerrum 

et al., 1972, Wroth and Hughes, 1973, Tavenas et al., 1975, Massarsch 

and Broms, 1976, Handy et al., 1982). All of these afford direct 

methods for measuring in situ soil stresses. A major disadvantage of 

these methods is that some disturbance will occur that will induce 

error. The Ko Stepped Blade therefore was devised to minimize the 

disturbance effect by extrapolating, stresses to their pre-insertion in  

situ condition (Schmertmann, 1985). 

For a cohesionless material the coefficient of lateral stress at 

rest. Ko, is bounded on the low side by the coefficient of active 

Rankine state of stress, Kg, and on the high side by the coefficient of 

passive Rankine state of stress, Kp (Lambe and Whitman, 1969). The 

active ratio, Kg, is less than one, the passive ratio, Kp, is greater 

than one. The Ko of a soil may have any value between Kg and Kp, 

depending on its stress history. For overconsolidated soils, it was 

found that values of Ko may be greater than one (Kjellman, 1936, 

Skempton, 1961). It is now well known that the value of Ko for 

overconsolidated clays may approach the passive failure at locations 

where the overconsolidation ratio is sufficiently high (Chowdhury, 

1978). 
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At rest lateral stress related to slope stability 

Smith and Redlinger (1953) described how a 3 inch wide cut in the 

Fort Union shale closed in about 24 hours. Palladino and Peck (1972) 

investigated slope failures of overconsolidated clays at Seattle. Due 

to high initial stress within the soil mass, construction methods 

utilized must minimize disturbance of the soil mass and provide the 

confinement against release of lateral stress with corresponding lateral 

deformation. 

Muller (1977) stated that the sliding mass was lying on a rock body 

under high initial stress, and this mass was jerked off like an arrow 

from a bow after Vajoint slide. In recent years, experiences gained at 

soil design section, Iowa Department of Transportation also shown that 

it is very effective to remedy slope failure in overconsolidated clays 

and clayshales using trench drains. If a trench is left open overnight, 

due to stress relief the slope will creep down and fail. 

The experiences stated above show the influence of initial stress 

in the stability of overconsolidated clays and clayshales. The origin 

of such initial stress may be of tectonic origin or may result from a 

history of deposition, erosion of overburden, slope formation, the 

diagenetic swelling of minerals in the rock and probably a variety of 

other causes (Chowdhury, 1978, Schmertmann, 1985). There is wide 

evidence that high in situ lateral stress still exist in 

overconsolidated clays and clayshales based either on geological 

investigations or on field measurements (Dodd and Anderson, 1972). 

Clay deposits may become unloaded as overburden is removed by 
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erosion, or by removal of glacial ice (Bjerrum, 1967). Due to such 

unloading, considerable strain energy will be stored in the clays, a 

stored strain energy that subsequently will be released if the bonds are 

destroyed as a result of weathering. This phenomenon is consistent with 

Brooker and Ireland's results (1965) as shown in Figure 14, which 

indicate that the value of Ko decreases with increasing value of 

plasticity index for the most heavily overconsolidated highly plastic 

clays (Duncan and Dunlop, 1969). Brooker (1968) has shown that the 

amount of strain energy stored after rebound for the clays tested 

increased with increasing plasticity index. The weathering release of 

this stored bending energy creates high Ko conditions if lateral 

movement is restrained. If deformation occurs due to excavation, then 

there may be a full or partial release of the high Ko. For highway 

cutting, the response of unloading is rapid, the stored strain energy of 

overconsolidated clays and clayshales tends to swell in large amount. 

Under this circumstance, the slope will be less stable than if it was 

formed slowly in nature. 

A high Ko condition will cause progressive movements which can 

result in reaching residual strength conditions and possibly progressive 

failures (Bjerrum, 1967). Based on finite element method studies of cut 

slopes, doubling Ko value will produce a doubling of the maximum shear 

stress, with lateral stresses highest in the toe area (Duncan and 

Dunlop, lyb9). Dunlop and Duncan (1970) showed that a high Ko condition 

causes the progressive failure for a cut to begin at the toe and 
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progress upwards, while with a low Ko condition the failure starts at 

the crest and progress downwards to the toe. High Ko condition could 

cause the potential failure surface to move much deeper into the slope 

than with a low Ko condition as shown in Figure 19 (Brown and King, 

1966, Lo and Lee, 1973). The shear stress level A is defined as the 

ratio of shear stress to the peak strength or residual strength. Where 

X equals 1 is a region where the strength has decreased to the residual 

state. By using finite element method to model strain softening 

behavior of the clays and the nonuniform stress-strain distribution in 

frictionless soil, Lo and Lee (1973) found that increasing Ko value from 

1 to 2 decreased the factor of safety from 1.45 to 1.16. The important 

effect of Ko on the factor of safety is evident. 

The Ko value inside a slope is not homogeneous. Haimson (1973) 

reported anisotropic Ky/Ky ratios of 1.5 to 3.2. Dalton and Hawkins 

(1982) reported measuring an anisotropic Ko ratio of 1.8 using Self-

Boring Pressuremeter testing. The reasons for anisotropic Ko ratio are: 

(1) the movement direction of the glaciers, (2) geometry of cutting or 

erosion, (3) seepage, (4) directional roller compaction (Schmertmann, 

1985). 
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TD 6H 

TENSION ZONE SHEAR failure zone 

TO 7H 

( b )  K . S 2 . 0  

Figure 19. Stress distribution with various Ko value (after Lo and 
Lee, 1973) 

Stability Analysis 

Introduction 

In the stability analysis of slopes, there are two basic lines of 

approach which are popular to engineers and researchers. The first is 

the limit equilibrium approach, and the second is the stress-strain 

analysis. The stress-strain analysis is done by finite element 

technique, such that given the material properties and the cross section 

of the slope, the deformation and factor of safety can be computed. 

However, due to unknown characteristic of the soil, it is hard to get 

accurate input data so the results from these stress-strain analysis are 
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sometimes questionable. They nevertheless are useful for a better 

understanding of the qualitative soil behavior of the slope under 

loading. 

Limit equilibrium analysis assumes that at the moment of incipient 

failure, soil elements of a surface in the slope reached the Mohr-

Coulomb failure strength simultaneously, and the free body contained 

within the slip surface and the free ground surface is in static 

equilibrium (Sarma, 1979). Although limit equilibrium cannot describe 

the deformation, it is able to produce comparable results as regards to 

the safety of the structure. The assumed failure surface can be of 

various shapes: planar, circular, or log spiral, and the factor of 

safety usually is incorrectly assumed to be the same at all the points 

along the failure surface (Chen 1975). The factor of safety is defined 

either as (1) a ratio of moments due to resisting to disturbing forces 

or as (2) a ratio of available to mobilized unit shear strength at any 

point along the slip surface. 

Methods and conditions analyzed 

In the methods, moment equilibrium and/or force equilibrium are 

satisfied. Some of the methods in the limit equilibrium approach are: 

Sliding Block, Ordinary Method of Slices (Fellenius Method), Friction 

Circle Method, Janbu's Method, Simplified Bishop's Method, Morgenstrern 

and Price's Method, and Spencer's Method. Certain assumptions are made 

in different methods, such as interslice forces are ignored in Sliding 

Block Method, Ordinary Method of Slice, and Friction Circle Method. The 
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Simplified Bishop's Method satisfies vertical equilibrium for each slice 

and overall moment equilibrium, but does not satisfy horizontal 

equilibrium or moment equlibrium for each slice. Janbu's, Morgenstern 

and Price's, and Spencer's Method satisfy overall, and interslice moment 

equilibrium, vertical and horizontal force equilibrium. Duncan and 

Wright (1980) summarized the characteristics of different equilibrium 

methods as Table 6. When it comes to the choice of the method, Fredlund 

and Krahn (1977) reported that the Spencer's and the Morgenstern and 

Prices's Methods are at least six times as costly to run as Simplified 

Bishop's or Janbu's Methods. Right now commercial available programs 

mostly are programmed with Simplified Bishop's or Janbu's Methods. Due 

to its simplicity in hand calculation, the Ordinary Method of Slices 

still is frequently used but under some circumstances, if used for 

effective stress analyses of slopes with high pore pressures, may give 

values of factor of safety 50% smaller than the correct value (Duncan 

and Wright, 1980). 

All the methods discussed above are based on limit equilibrium 

analysis which assumes that at the moment of incipient failure, soil 

elements of sliding surface reaches the Mohr-Coulomb failure strength 

simultaneously, which is appropriate for an ideally plastic soil that 

exhibits no volume change. This may not be true for overconsolidated 

clays and clayshales which are brittle materials, and their Ko values 

along the slope are not constant. After excavation or weathering, Ko 

value is high in toe area and decreases upwards. It is believed that 
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Table 6, Characteristics of equilibrium methods (after Duncan and Wright, 1980) 

Equilibrium Conditions Satisfied Practical for 
Procedure Shape 

Overall Ind. Slice Vert. Horiz. of Slip Hand Computer 
Moment Moment Force Force Surface Calc. Calc. 

Ordinary Method Yes No 
of Slices 

Bishop's Modified Yes No 
Method 

Janbu's Generalized Yes 
Procedure of Slices 

Morgenstern and Yes 
Price's Method 

Spencer's Method Yes 

Force Equilibrium No No 

Log Spiral Yes 

No No 

Yes No 

Yes Yes Yes 

Yes Yes Yes 

Yes Yes Yes 

Yes Yes 

Yes Yes 

Circular Yes 

Circular Yes 

Any 

Any 

Any 

Any 

Yes 

No 

No 

Yes 

Log Spiral Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
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the crack initiates upwards from toe. Once this kind of local failure 

takes place, the strength of the soil will drop, which initiates a 

redistribution of interslice forces and lead to some further local 

failure (Law and Lumb, 1978). The methods of limit equilibrium analysis 

have failed to take this fact into their development. 

Numerous methods of slices have been proposed based on differing 

assumptions regarding the interslice forces related to the direction, 

magnitude, or point of application (Fredlund and Krahn, 1977, Wilson and 

Fredlund, 1983, Fan, 1983, Fredlund, 1984, Fan and Wilson, 1986). The 

magnitude of the interslice forces on each slice was set as zero 

(Fellenius, 1936, Janbu, 1954, Bishop, 1955), or the interslice 

resultant forces was set to a constant angle (Spencer, 1967). The U.S. 

Army Corps of Engineers assumed that the direction of the interslice 

force was either (1) parallel to the ground surface, or (2) equal to the 

average slope from the beginning to the end of the slip surface. 

Morgenstern and Price (1965) allowed any arbitrarily defined function to 

be used to define the direction of the resultant interslice forces. 

However, several researchers postulated that these interslice forces 

only have an insignificant variations on the computed factor of safety 

(Bishop, 1955, Morgenstern and Price, 1965, Fredlund, 1984, Fan and 

Wilson, 1986). 

A general and empirical interslice force function was developed 

through a detailed study on interslice force functions computed from 

finite element analysis (Wilson and Fredlund, 1983, Fan, 1983). It was 

proposed that the interslice force function for simple homogeneous 
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slopes with circular slip surfaces are bell-shaped, with the maximum 

occurs at mid-slope. The interslice force at the crest and the toe area 

are the same. From their results, the Ko value is high at the crest and 

the toe, and lowest in the mid-slope. This can also exemplify that 

cracks of potential shear may initiate from either the toe or crest. 

For the case of a cohesive soil, all methods satisfying moment 

equilibrium (or moment and force equilibrium) give the same results. 

For the case of a semi-infinite slope, same factor of safety is 

suggested when the soil is cohesionless. However, the factor of safety 

for methods satisfying force equilibrium depend on the interslice force 

function (Fan and Wilson, 1986). 

Methods of predicting failure 

The history of control of many big, old and persistent landslides 

is measured by decades, and lots of money is spent annually to repair them. 

It seems that "the landslide devil" laughs at people and their vain 

efforts to manage him (Ter-Stepanian, 1984). Can we predict the 

landslide and remedy it before it totally fail? So far it is 

problematical to actually forecast the slope movement. The usual 

methods for landslide forecasting are based on the following 

possibilities: 

(A) Extrapolation from on-site displacement measurements. 

Landslides involve movement and the magnitude, rate and distribution of 

this movement are generally the most important measurements required. 

Most of the prediction methods are based on the creep model which 
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assumes that landslides are slow, steady creeping flow under gravity of 

a Bingham or viscoplastic substance on an infinitely long slope (Ter-

Stepanian, 1963, Yen, 1969, Saito, 1965, 1969, 1980, Savage and 

Chleborad, 1982). The different mechanisms are discussed in Part I. 

The main difficulties in such predictions are firstly to recognize the 

scale of accleration required to cause failure, and secondly to be able 

to isolate fluctuations of displacement caused by external agents but 

not leading to failure (Hungr, 1981). The various kinds of measurement 

instruments are available such as inclinometer, tiltmeter, extensometer, 

and etc. The location of the sliding plane is shown by measured 

deformation-depth relationships, which is important for engineers when 

considering the remedial methods. 

(B) Landslide forecasting from pore water pressure measurements. 

An increase in pore water pressure and corresponding loss of shear 

strength is a recognized major factor in landslides. The role of pore 

water pressure in the equilibrium of slopes has long been recognized, it 

can elucidate the mechanism of short and long-term stability as well as 

establish relationships between the distribution of pore water pressure 

versus depth and the slip surface as shown in Figure 20 (Skempton, 1964, 

Lefebvre, 1981, Hutchinson, 1982). Structured clay of Champlain clay of 

eastern Canada behaves like highly overconsolidated London clay in that 

both materials are highly strain softening, and their strength decreases 

rapidly after failure (Lefebvre, 1981). However, when the structure of 

the clay collapse under shear a tendency to swell is observed in London 



www.manaraa.com

114 

clay, while eastern Canadian clays tend to compress. There are also 

many examples of measurements estabilishing the relationship between 

variations in pore water pressure and factor of safety as shown in Table 

7 (Skempton, 1977, Law, 1980, Lefebvre, 1981). It has been shown that 

the average pore water pressure parameter is influenced by the clay 

structure and consolidation state. When the consolidated stage is 

high and sensitivity is low, the value of at failure will be less. 

(a) 
WATER CONTENT t%) 

DISTANCE 

ABOVE 
OR 

BELOW 
SLIP 

SURFACE 
( c m )  

MILL LANE :943 UXBRIDGE 1955 

L 

— SLIP 

SURFACE 

ÎNORTHOLT 1955 

WATER CONTENT (%) 

DISTANCE 

ABOVE 
OR 

BELOW 
SLIP 

SURFACE 
(  c m )  

ST-VALLIER DE BELLE-

CHASSE 1968 
ST- LOUIS DE BONSE 

COURS 1966 

Figure 20. Variation of water content with slip surface; (a, in London 
clay, and (b) in Champlain clay (after Skempton, 1964, 
Lefebvre, 1981) 
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Table 7. Relationship between pore water pressure and factor of safety 
at failure for London clay and Champlain clay (adapted from 
Skempton, 1977, Law, 1980, Lefebvre, 1981) 

Average Pore 
Clay Tpye Consolidation Water Water Pressure 

State Content Parameter, 

London clay Insensitive, stiff, aplastic 0.25-0.35 
highly overconsolidated Limit 

Champlain clay Sensitive, soft, L̂iquid 0.44-0.49 
lightly overconsolidated Limit 

The pore water pressure field as a whole is characterized by the average 

value of parameter Ty. However, the value of pore water pressure will 

be influenced due to geological restrictions such as negative pore 

pressures still existing in the unsaturated wedges of multiple seepage 

faces, even with the water table is at the ground surface. The pore 

water pressure parameter is mostly used in back-analysis to calculate 

factors of safety on which the stability evaluation will be based. It 

is a useful parameter to understand the landslide mechanism, especially 

for first-time slide. 

In order to measure the pore water pressure, many types of 

piezometers have been developed, which include twin-tube hydraulic 

piezometers, Casagrande piezometer, pneumatic piezometer, electric 

piezometer, etc. For measurement of pore water pressure in clays or 

clayshales, in which permeabilities are low or suctions may be present 

because of unloading, high-air-entry, low-flow piezometers should be 
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used (Vaughan and Walbancke, 1973). 

(C) Landslide forecasting from rainfall data. It is possible to 

predict relationships between records of rainfall, leading to higher 

pore pressure and the landslides. These relationships are hard to 

establish because complex phenomena are involved such as: (1) the 

analysis of the water balance which include the amount of water received 

at the site among évapotranspiration, runoff, and infiltration, (2) the 

relationships between the rainfall spectrum and variations in pore 

pressure (Pilot, 1984). Although some researches have been done in 

finding a relationship between rainfall and the triggering of 

landslides, it appears that pattern has some regional limitation. So 

far no comprehensive relationship exists, especially for 

overconsolidated clays and clayshales. 

(D) Landslide probability maps. These are prepared based on the 

occurrences of landslides shown on airphotos and ground maps. Compared 

airphotos with time, the phenomena change of land forms may indicate the 

susceptibility of landslide. Ground maps can be used with a grid 

overlay, and the map units are arbitrarily grouped in several classes. 

The relative susceptibility to landslide is expressed from very low 

(form I) to very high (form VI). Engineers therefore can evaluate the 

area of landslide deposits on the average failure record of ground maps 

(Nilsen and Brabb, 1977). 
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Field Tests 

Introduction 

Field tests were conducted in order to ascertain slope stability 

using the Borehole Shear Test and Ko Stepped Blade Test. Tests were 

performed at three different sites designated as Indianola. Osrpola. ar'i 

Guthrie. 

The Borehole Shear Test is a device for determining in s i t u  

cohesion and internal friction of soil and rock, under essentially 

drained conditions. A diagram of the test apparatus is shown in Figure 

21. The test entails performing a series of direct shear-type tests on 

the inside of a borehole (Handy and Fox, 1967, Spangler and Handy, 

1982). This is accomplished by applying a normal force to the sides of 

the borehole through two opposing and serrated steel plates. After 

allowing sufficient time for consolidation to occur under the applied 

normal force, the shear phase of the test is initiated by pulling the 

shear plates verticaly upward to induce shear. As in conventional 

direct shear testing, a series of tests with increasing applied normal 

stress (DP,) is performed, while the corresponding shear stress (T) is 

measured. A difference from the laboratory procedure is that the test 

is repeated at the same spot, as a stage test (Schmertmann, 1975). 

Results are plotted to define the Mohr-Coulomb failure envelope 

{Lutenegger and Hallberg, 1981). 

During testing the shear head is lowered to the desired test depth 

and the plates are expanded against the hole by CO2 to a known normal 

stress. The pressure regulator is used to maintain a constant normal 
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stress. Testing procedures recommended by Lutenegger and Hallberg 

(1981) and currently in preparation as an ASTM standard method are 

followed. 

SHEAR STRESS CONSOLE 
DYNAMOMETER 

WORM GEAR 
PRESSURE GAUGE-, 

'GAS LINES 
HYDRAULIC 
GAUGE 

REACTION 
CYLINDERS PRESSURE 

REGULATOR 

BASE PLATE 

SHEAR HEAD 

Figure 21. Borehole Shear Test components 

In Indianola and Osceola sites, five Borehole Shear Tests were 

performed. The tests were conducted in holes drilled with a hand auger 

which cut a hole approximately 3 inches in diameter. 

The Ko Stepped Blade Test was first presented by Handy et al. 

(1982) as a technique for determining the in situ lateral stress in 

soils. By forcing a stepwise flat-plate penetrometer into the soil and 



www.manaraa.com

119 

measuring the stress acting on the face of each of the steps, the i n  

situ stress state is obtained by extrapolating the data to a zero blade 

thickness. 

Based on a series of controlled laboratory tests using compacted 

soil. Handy et al. (1982) suggested that the initial stress condition 

could be described by a simple expression as; 

Po = a * Pi * e-bt 

where po = in situ stress 

Pi = pressure on a blade of thickness t 

a = coefficient (assumed to equal to 1.0) 

b = coefficient 

Thus, a plot of blade thickness versus logarithm of measured pressure 

would be linear with slope b and intercept log po. 

Two Ko Stepped Blade Tests were conducted at both Indianola and 

Osceola sites, one test located within the slide area and the other 

outside of the slide area. The tests were conducted by using a rig of 

the Iowa Department of Transportation. In the last test the blade was 

bent after being pushed into what most likely was buried boulders. At a 

third site the Guthrie slide, only qualitative data were obtained. In 

all tests the blade was facing the slide zone, so the lateral stress 

acting on the slide could be measured. The materials tested were 

highway foreslope compacted fills. 
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Indlanola 

(A) Introduction 

The test site designated as Indianola is a foreslope at 2:1 slope, 

compacted silty clay fill. The location of the site is approximately 3-

4 miles south of Indianola on Iowa highway 69, Warren county. The road 

was first constructed in 1945. A pond is located on the east side of 

the roadway, and a 48 inch underground culvert crosses the roadway at an 

angle of 30° with centerline. The slide first occurred approximately 15 

years ago. When the culvert was believed to have been partially 

blocked, such that water in the pond leaked and saturated the soil, 

weakening it and making slope unstable (Kirmit Dirks, Iowa Department of 

Transportation, personal communication). The maintenance forces of the 

Iowa D.O.T. then cleaned out the culvert and reshaped the slope. As 

time passed, the culvert was blocked again, and the slide reactivated, 

and free water seeped out near the toe of the slope. Surface ponded 

water could be observed in several places. A sequence of scarps about 

2-3 ft high and tension cracks were observed in the slope, and the toe 

slope slid away. 

The first Ko Stepped Blade Test was conducted in the slide zone at 

Sta- 384+65, Lt. 15 ft, which was underlain by 31 ft of firm gray brown 

silty clay fill, that was underlain by firm gray brown sandy silty clay 

glacial till to 37 ft, which was the natural ground soil. Underneath 

this was gray brown sandstone. The water table was observed at 31.6 ft 

24 hours after drilling. A cross section is shown in Figure 22. 

Second Ko Stepped Blade Test was conducted at Sta. 385+22, Lt. 15 
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Figure 22. Cross section of Indianoid slide 
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ft which by visual observation was considered outside the sliding area. 

The fill is firm gray brown silty clay to 25 ft, underlain by firm gray 

brown sandy silty clay, with occasional boulders to 31 ft as the natural 

glacial till, followed by layer of gray brown clayey sand to 42 ft, then 

sandstone. The water table was observed at 22.3 ft 24 hours after 

drilling. After hitting buried boulder, the blade was bent at 20 ft 

depth and testing was terminated. The fill has a total wet density of 

125 pcf at a moisture content of 26.6%. The liquid limit is 34, and the 

plastic limit is 18. 

Borehole Shear Tests were conducted in the slide zone, the first 

about 60 ft down from the crest in a hand augered hole. A second hole 

was drilled about 10 ft farther down slope from the first hole, but was 

too muddy to test. A third hole was abandoned after hitting rubble. 

(B) Results 

The results of Borehole Shear Tests are shown in Table 8. The 

factor of safety is 1.03 calculated by the Ordinary Method of Slices 

using a cohesion of 0.58 psi and friction angle of 22.9°. Since no 

excessive pore water pressure existed in this case, it is appropriate to 

use the Ordinary Method of Slices for stability analysis (Duncan and 

Wright, 1980). Based on stability analysis and field observations, it 

is believed that the sliding surface is located at 4 ft depth at Boring 

3. The shear strength parameters meet the previous discussion in part I 

that cohesion will be lost after a landslide. However, if cohesion is 

zero, the calculated factor of safety will drop to 0.69 which is too 
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Table 8. Borehole Shear Test results at Indianola slide 

Boring Depth (ft) Soil Type c(psi) <> r̂  

3 3.0 Silty Clay Fill 0.57 24.5° 0.98 

3 4.0 Silty Clay Fill 0.58 22.9° 0.98 

low. These measured Borehole Shear Test strengths therefore are 

residual strengths. 

The results of the Ko Stepped Blade Tests are shown in Figure 23. 

Horizontal stresses are corrected to Ko values by dividing by the 

overburden stresses at each depth, as shown in Figure 24. Ko values are 

calculated on an effective stress basis. Only one test (35 ft) is 

affected by pore water pressure. Several high Ko values that are 

consistent at different depths may be related to the methods of 

compaction. At shallow depth (5 ft), the Ko value is high due to 

compaction coupled with a small overburden weight. At zero depth, the 

overconsolidated Ko value theoretically should reach infinity. 

By comparing the sliding and nonsliding profiles, a higher Ko 

exists in the nonsliding area at 5 ft depth, below which the two 

profiles show similar trends. It can be interpreted that the initial 

stress conditions at two sites were very close, as the data are 

repeatable. The trend of the Ko profiles and the magnitude of the Ko 

values detected in both sliding and nonsliding areas are different from 

those of elastic theory (Clough and Woodward, 1967, Perloff et al., 

1967, Poules and Davis, 1974), as the maximum Ko value from elastic 
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Figure 23. Results of Ko Stepped Blade Test at Indianola slide 

theory is less than 1 and occurs in the middle of the slope. These 

discrepancies can be attributed to the characteristics of the soil, the 

methods of compaction, and the effect of stress relief. This slide is a 

shallow slump restricted to the side slope area, and does not extend 

deep into the central part of the slope yet. This can also be confirmed 

by back-analysis of Borehole Shear Test results and field drilling 

observations, in which no specific weak zone or free water were 

observed. However, slope failures may go deeper with time. The 
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Figure 24. Ko profile at Indianola slide 
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concrete culvert provided some passive resistance which was helpful to 

keep scarps from forming. 

The compacted silty clay fill is an overconsolidated clay. The 

first slide occurred approximately 26 years after construction, and the 

reactivated slide occurred about 15 years later. The reason for 

reactivation was the plugged culvert. In an artificially compacted soil 

as opposed to a cut and stress-relieved overconsolidated soil no 

negative pore water pressures should exist, negating this as a delay 

mechanism. Based on field observations, this slide initiated from the 
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toe area and progressed upslope which suggests that it is a reactivated 

progressive failure. The failure mechanism for both the initial and the 

reactivated slides probably involved water, excess pore water pressures, 

and strain softening. The recommended way to fix this slide is to re

open the culvert and reshape the slope, or install a toe drain in the 

west side of the slope and an interseptor trench in the east side to 

intercept the infiltrating pond water (Dirks, Iowa Department of 

Transportation, personal communication). 

Osceola 

(A)Introduction 

The test site designated as Osceola is a foreslope 2:1 slope, in 

compacted firm gray brown glacial clay fill. The location of the site 

is approximately 4-5 miles south of Osceola on Iowa highway 69, Clark 

county. The guardrail at SW quadrant of the bridge has moved downslope 

so that the end is approximately 5 ft below the roadway at approximately 

Sta. 795. The toe of the slope through this area has moved beyond the 

right-of-way fence, a distance of about 8-10 feet. From the guardrail 

upslope, several places of active sliding were observed up to the 

original backslope. From field inspection, despite the excessive settle 

down of the guardrail, no obvious scarps or tension cracks were 

observed. 

The road was first constructed in 1931 at 1.5:1.0 slope. In 1960, 

the bridge guardrail was added at the side slope, and the slope was 

flattened to a 2:1 ratio (Dirks, Iowa Department of Transportation, 
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personal communcation). A dry pond is located at west side of the 

slope. 

The upper soil layer is 7 ft of stiff gray brown silty clay, 

underlain by fine gray brown sand with occasional clay layers to 14 ft, 

then followed by layer of firm gray brown glacial clay. The top layer 

of silty clay has a total wet density of 120 pcf at a moisture content 

of 23%, the liquid limit is 33, and the plastic limit is 17. Twenty-

four hours after drilling, the water table was observed at 6.2 ft. A 

buried gas line is located in the west side of the slope, just outside 

the toe of the slope. 

The first Ko Stepped Blade Test was conducted in the slide area at 

Sta. 794+57, Lt. 16 ft. This zone has a layer of firm gray brown 

glacial clay fill to 21 ft, underlain by a layer of firm gray brown 

sandy silty clay as the natural glacial till. A water table was 

observed at 20.6 ft 24 hours after drilling. The cross-section is shown 

in Figure 25. 

A second Ko Stepped Blade Test was conducted at Sta. 793+37, Lt. 20 

ft, where was considered outside of the slide area on the basis of 

visual observation. The fill has a layer of firm gray brown glacial 

clay fill to 6 ft, underlain by a layer of firm gray brown glacial clay. 

No water table was observed at a depth of 14.9 ft 24 hours after 

drilling. The fill has a total wet density of 125 pcf at a moisture 

content of 21.0%, the liquid limit is 40, and the plastic limit is 19. 

The natural glacial clay has a total wet density of 130 pcf at a 

moisture content of 23%. The liquid limit is 24, and the plastic limit 
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is 15. 

Borehole Shear Tests were performed in the crest and toe areas, in 

hand-drilled holes. Three tests were conducted, two in the crest area 

and the third in the toe area. 

(B) Results 

The results of Borehole Shear Test are shown in Table 9. This 

slide is a block type slide and the predicted shear surface is along the 

older buried slope (1.5:1.0) based on the field observation. The factor 

of safety is 3.2 using Ordinary Method of Slices and Borehole Shear Test 

strength. However, water infiltrating along the shear surface and/or 

the discontinuity at the shear surface may have decreased the cohesion. 

When the cohesion drops to 0.43 psi and friction angle is same, the 

factor of safety is 1.0. Because the tests did not engage the shear 

surface, the measured Borehole Shear Test strength is a peak strength, 

while the strength mobilized along the predicted shear surface is fully 

softened strength. This is consistent with the case studies of Handy 

(1986). 

Table 9. Borehole Shear Test results at Osceola slide 

Boring Depth (ft) Soil Type c(psi) <t> r" 

2 2.0 Glacial Clay Fill 5.05 16.0* 0.64 

2 3.5 Glacial Clay Fill 2.38 19.0° 0.99 

3 2.0 Firm Sandy Silty Clay 2.76 13.5° 0.98 
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The results of Ko Stepped Blade Tests are shown in Figure 26. 

Horizontal stresses are corrected to Ko values by dividing by overburden 

weights at each depth, shown in Figure 27. Ko values are calculated 

based on effective stress, and thus are not affected by pore water 

pressures. The results showed that at shallow depth (2 ft), the Ko 

value is the highest (7.5-8.4). This may be due to shallow soil 

overburden weight which will result in high Ko value. At unsliding 

profile, the Ko reaches a peak at a depth of 7.6 ft which coincidentally 

is at the natural ground surface. In the sliding Ko profile, a much 

smaller peak Ko at 7.6 ft may be due to the original pavement surface 

Figure 26. 

DEPTH (FT) 
° SLIDE + NONSLIDE 

Results of Ko Stepped Blade Test at Osceola slide 
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Ko profile at Osceola slide 

which was widened and backfilled in 1960 (Dirks, Iowa Department of 

Transportation, personal communication). The overall Ko values of the 

unsliding profile are higher than the sliding profile above the natural 

glacial till surface (0-7.6 ft), indicating a substantial release of 

lateral stress in the slide area. Again, the trend of Ko profiles and 

the magnitude of Ko values are different from prediction of elastic 

theory. The settlement of the guardrail, back-analysis of Borehole 

Shear Test results, and Ko values indicate that the sliding mass is 

moving along the old buried slope surface (1.5:1.0). This is a block 
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slide, and different materials were observed by hand augering in the 

central part and side slope of the slide area. The guardrail settlement 

can be caused by inadequate compaction of the side slope or by downward 

movement of a vertical wedge. The ability of the Ko Blade Test to 

distinguish between the natural glacial till and fill can be important 

to estimate a sliding surface without resorting to Slope Indicator 

methods. 

The tested soil is compacted glacial clay fill, is an 

overconsolidated clays. This slide occurred approximately 26 years 

after the new side slope was put on. No negative pore water pressure 

effects should have existed. Most probably as surface water infiltrated 

along the interface between the new and the old fill, it weakened the 

soil interface. This is particularly likely if vegetative mottes was 

left in place. Thus, water softening may be the main factor for this 

delayed failure. 

The recommended way to fix this slide is to remove the guardrail 

and part of the side slope soil, flatten the foreslope to a 3:1 slope, 

and adequately recompacte the slope (Dirks, Iowa Department of 

Transportation, personal communication). 

Guthrie 

(A) Introduction 

The test site designated as Guthrie is a foreslope at 2.5:1.0 

slope, compacted firm gray brown glacial clay. The location is on the 

west side of Iowa highway 25 approximately 0.5 mile north of the 
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junction with Iowa highway 384 in Guthrie county. The slide type is a 

slump. This site has distinctive crack pattern, including a well-

developed slide, developing tension cracks, and an unslid zone. A Ko 

Stepped Blade Test was attempted and then terminated due to leaking 

diaphragms. One cell Electric Ko Blade then was used that did not allow 

extrapolation to zero blade thickness but is nevertheless useful to 

show changes in lateral stress. Three tests were performed; test a is 

adjacent to the slide area, test b is in the developing tension crack 

zone, and test ç is in the unslid zone. 

(B) Results 

The results of the tests are shown in Table 10. Due to the 

restriction to one blade cell, no lateral stress at zero thickness can 

be measured. Two minute readings are given at 3 to 4 ft depth at each 

locat ion. 

At zone a, the lateral stress is relieved by sliding, and the 

reading is lowest (19.4 psi). The development of tension cracks at zone 

b is consistent with the partial relief of lateral stress (26.8 spi) 

compared to the unfailed slope zone c, where the lateral stress is the 

highest (55.9 psi). In Table 10, the lateral stress relief at different 

stages of sliding can be clearly seen. The Ko Blade therefore should 

prove valuable to detect lateral stress relief in compacted soils prior 

to sliding. 
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Table 10. Comparison of lateral stress at different locations of slope 
(stress sensor tranverse to slope direction) 

Location Slope Situation Lateral Stress (psi) 

On crest, 11 ft 
from slide scarp 

Adjacent to the slide 19 .4 

On slope, 31 ft 
from slope edge 

Tension crack developing 26 .8 

On slope, 28.5 ft 
from slope edge 

Unfailed slope 55 .9 

Discussion 

From the preceding case histories it appears that slope failure can 

be analyzed and perhaps predicted from measured Ko profiles and back-

analyses of Borehole Shear Test results. The type of slide also can be 

decided. 

Engineers concerned with the design and analysis of slopes and 

embankments have long been interested in determining their stresses and 

deformations. The analysis of stress in earth embankment is an 

exceeding complex problem. Most researchers assume that the three-

dimensional system can be represented as a two-dimensional or plane 

strain problem, and assume that the soil is linearly elastic so that the 

problem can be reduced to a standard plane strain elasticity analysis. 

Several charts are available for different slope configurations and 

foundation flexibility, the predicted horizontal stresses along vertical 

sections varying with depth, with a maximum Ko value that is less than 1 

and is located in the middle of the slope (Clough and Woodward, 1967, 
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Perloff et al, 1967., Poulos and Davis, 1974). Neither the trend of the 

Ko profile nor the magnitude of the Ko values analyzed from elastic 

theory or by finite element method is similar to the field test results, 

mainly because of built-in stresses from compaction and the effect of 

stress relief. The behavior of stiff overconsolidated clays and 

clayshales is strain softening, not elastic or plastic (Chowdhury, 

1978). 

Numerous analysis methods have been proposed based on differing 

assumptions regarding interslice forces including direction, magnitude, 

point of application, and their effects on the factor of safety. The 

direction of the interslice forces on each slice may be set at a 

constant angle that can (1) parallel the ground surface, (2) equal the 

average slope from the beginning to the end of the slip surface, or (3) 

be at an arbitrarily defined direction. The magnitude of the interslice 

forces on each slice can be zero, as in the Ordinary Method, or an 

arbitrary assumed values. However, the interslice forces have only an 

insignificant effect on the computed factor of safety (Bishop, 1955 ,  

Morgenstern and Price, 1965, Fredlund, 1984, Fan and Wilson, 1986). For 

the case of a cohesive soil, all methods satisfying moment equilibrium 

(or moment and force equilibrium) give essentially the same results (Fan 

and Wilson, 1986). This means that the lateral stress of the individual 

slice presumably does not strongly influence the results by different 

limit equilibrium methods. However, none of these methods recognize the 

role of a high initial lateral stress wherein KQ is larger than 1.0, nor 



www.manaraa.com

136 

do they recognize the relevance of strain relief or of progressive 

failure. This would appear to be a salient area for future research, 

both analytical and in the field, as with the Ko Blade. 

Although the individual interslice forces did not have a 

significant effect on the computed factor of safety, from the Ko profile 

and Borehole Shear Test results, it is possible to tell the type and the 

extended area of slide which can not be seen by visual observation. The 

long retention of lateral stresses in compacted soils indicates that the 

best way to predict a slide by Ko Stepped Blade Test is through periodic 

testing at the crest or toe of a potential slide area, to detect changes 

in Ko with time. Because of accessibility the best place to test 

highway foreslopes is at the crest area, while for natural slopes the 

crest and toe may possibly be tested. 
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GENERAL DISCUSSION 

Slides may occur in almost every conceivable manner, slowly or 

suddenly, with or without any apparent provocation. Various studies 

have shown that most damaging landslides are human-related, and most of 

the landslide losses can be prevented by thorough preconstruction 

investigation, analysis, design, and careful construction procedures. 

Because of abnormal behavior compared to other soil and rock materials, 

the slope stability of overconsolidated clays and clayshales is of 

particular interest to researchers. 

Case histories of slope failures in stiff overconsolidated clays 

and clayshales indicate that factors related to stability analysis 

include pore pressure, effective stress, peak and residual strengths, 

and effects of fissures and anisotropy. Different failure models are 

related to the strength reducing mechanisms causing delayed failure, 

progressive failure, and creep. 

For delayed failure, the most common factors are negative pore 

water pressure equilibration and strain softening, which will lead to a 

reduction in shear strength from peak to the fully softened strength. 

The procedure of negative pore water pressure equilibration may be long 

compared with the softening process. Thus, for a long-term stability, 

negative pore water pressure equilibration will be a dominant process, 

especially for a first-time slide. The erosion of natural slopes and 

the downcutting of the river valleys is usually slow, and because 

negative pore water pressure was locked inside the slope, the slope is 

temporarily stable. Negative pore water pressure can be predicted in 
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cuts from the rate of soil removal, the swelling potential of the soil 

mass, the ratio of the thickness of soil layer removed to its original 

thickness, and the nature of the bottom boundary. 

It may not be easy to distinguish between progressive failure and 

delayed failure on the basis of back-analysis alone. For delayed 

failure, the slide type is a first-time slide occurring mostly in 

homogeneous soil with small displacements, and the strength parameter is 

characterized by the fully softened state of strength. For progressive 

failure, the slide type is a reactivated slide occurring mostly in 

nonhomogeneous or layered soils with large displacements, and the 

strength is characterized by the residual strength. 

Theoretically, progressive failure is due to the nonuniform 

mobilization of shear strength along a potential slip, which maybe 

occurred due to local overstress, large deformation, and changes in 

loading conditions. This failure process can not be interpreted by 

softening or negative pore water pressure equilibration. An elastic 

yield model is a good approach but with some restriction, and the shear 

band models seem to fit some field observations of the growth pattern of 

slip surface. However, the calculated factor of safety by shear band 

model is in the upper-bound and is not conservative. 

Where cracks will initiate in a slope is an argumentative question. 

Based on field observations, finite element analysis, and stability 

analysis, it is believed that the cracks initiate from the toe for 

overconsolidated clays and clayshales. The rate of crack propagation 
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may be related to the strain softening behavior. The area of overstress 

also is influenced by the initial stress. A high initial lateral stress 

can result in large shear stress at the base of an excavated slope, and 

an increased possibility of progressive failure. This initial lateral 

stress is related to the stored strain energy and plasticity index. 

Creep is a widespread natural phenomenon, and can be defined as the 

very slow downward and outward movement of earth slopes, without the 

formation of a continuous rupture surface which usually precedes 

majority of landslides. Seasonal creep is resulted from several 

seasonal processes limited at surficial layer, while deep creep is still 

ambiguous. Creep does not proceed continuously or uniformly, the rate 

being affected by changes such as the rate of dissipation of the 

negative pore water pressure, and seasonal changes caused by 

fluctuations of perched water table. Under these circumstances, the 

mechanism of creep may coexist with progressive failure. 

To interpret landslide by creep model, the rheological model 

approach is the best known method. The Bingham flow model is 

appropriately suited. Up to the present, very few creep models fit 

field conditions theoretically or quantitatively. 

In natural landslides, creep, progressive failure, and delayed 

failure all may coexist at different stages. Their relationships can be 

focused on as a difference in driving force, deformation, deformation 

rate, sliding zone, initiation of crack, slide type, geological soil 

types, and strength parameters. 

The Borehole Shear Test and the Ko Stepped Blade Test were used in 
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several landslide sites including both failed and nearby unfailed 

slopes. The ability to predict slope failure can be exemplified by the 

measured Ko profiles, back-analysis of Borehole Shear Test results, and 

visual observation. The type and the depth of rotational slide and 

block slide can also be determined. The lateral stresses in an active 

slide, a potential slide, and a nonsliding part of slope were related to 

stress relief. The application of elastic theory or finite element 

analysis to predict lateral stresses in a compacted or overconsolidated 

soil is inappropriate since they take into account only the response of 

the soil to its own weight and externally applied forces, and not the 

inherited locked-in stresses. 

Similarly, although the lateral stress of the individual slices 

does not have a significant effect on the computed factor of safety in 

conventional limit equilibrium methods, these methods do not take into 

account inherited lateral stresses or predict progressive failures. 

From the Ko profile and back-analysis of Borehole Shear Test results, it 

is possible to tell what type of the slide and whether the slide area 

extends to other zone whic'j can not be detected by visual observation. 

The best way to predict the slide by the Ko Stepped Blade may be through 

periodic testing to determine time-related changes in Ko. 
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CONCLUSIONS 

1. In situ lateral stress plays an important role In slope stability 

of overconsolidated clays and clayshales. 

2. Based on the Ko profile and back-analysis of Borehole Shear Test 

results, it is possible to distinguish the type of slide and whether 

the slide area extends to other zones which can not be detected by 

visual observation. 

3. Based on the Ko profile, it is possible to distinguish natural soil 

layers that can be inferred to support the sliding zone. 

4. The trend of the Ko profile and the magnitude of the Ko value 

analyzed from field tests are not in agreement with elastic theory that 

does not recognize inherited stresses. 

5. The lateral stresses in a slide, a potential slide, and a 

nonsliding part of a slope show the results of lateral stress relief at 

different stages of sliding. 

The conclusions 6-10 are mainly based on literature reviews. They 

are also consistent with the results and observations of field tests 

performed in this study. 

6. In natural landslides, delayed failure, progressive failure, and 

creep may coexist at different stages. 

7. The differences between delayed failure, progressive failure, and 

creer focus on driving force, deformation, deformation rate, sliding 

zone, initiation of cracks, slide types, geological soil types, and 

strength parameters. 

8. For overconsolidated clays and clayshales, because of stress relief 
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the initiation of cracks start from the toe of the slope. 

9. For different clayshales worldwide, the engineering behavior and 

shear strength parameters are very similar. Therefore, the experience 

from case histories can be applied and compared. 

10. The creep model that is not associated with the presence of a slip 

surface is not a landslide phenomenon, and the residual strength can not 

interpret a first-time slide through back-analysis. 
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APPENDIX A 

Borehole Shear Test Results: 

INDIANOLA: 

Boring 3 & Depth 3 ft 
Normal stress (psl) 4.8 9.7 15.3 20.6 
Shear stress (psl) 2.1 4.5 7.0 8.1 

Boring 3 & Depth 4 ft 
Normal stress (psi) 4.3 10.0 15.0 20.6 
Shear stress (psi) 2.1 4.0 6.4 7.8 

OSCEOLA: 

Boring 2 & Depth 2 ft 
Normal stress (psi) 4.8 9.8 15.3 20.6 25.8 
Shear stress (psi) 4.2 6.7 7.2 8.3 8.6 

Boring 2 & Depth 3.5 ft 
Normal stress (psi) 4.3 9.8 15.3 20.0 23.2 
Shear stress (psi) 3.7 5.9 8.1 9.7 10.2 

Boring 3 & Depth 2 ft 
Normal stress (psi) 5.0 10.3 15.3 22.7 27.9 
Shear stress (psi) 4.2 5.2 6.4 7.8 10.0 
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APPENDIX B 

Data reduction and interpretation of Ko Stepped Blade Test usually 

is done with semi-logarithmic graph paper, with blade thickness plotted 

on the arithmetic scale and the measured stresses on the logarithmic 

scale. A best-fit line is drawn through the points of a given data set. 

Pressure readings taken at the same depth are considered and 

plotted as a set. Thus, four data points (3.0, 4.5, 6.0, and 7.5 mm 

thickness) are obtained at the first advance depth, three data points 

(3.0, 4.5, and 6.0 mm thickness) at the second advance depth, two data 

points (3.0, and 4.5 mm thickness) at the third advance depth, and 

finally a single data point (3.0 mm thickness) at the fourth depth. The 

single data point usually is discarded. Only those points that show 

increasing pressure with increasing thickness are used to extrapolate to 

zero thickness. Several reasons for non-linearity are proposed, and are 

discussed by Mings (1987) and by Retz (1987). 

For example from the table in the next page, corresponding values 

at 5 ft depth are: 

3.0 mm 12.5 psl 4.5 mm 17.0 psi 

6.0 mm 12.5 psi* 7.5 mm 34.5 psi 

* Not consistent increasing pressure with increasing thickness; data 

omitted. 

An exponential regression, r̂  = 1.00, a = 6.24, b = 0.23 mm~̂  

where a is the extrapolated In situ lateral stress in psi and b is the 

slope. 
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Ko Stepped Blade Test Results: 

Location: Indlanola, Iowa 

Condition; Slide Zone 

DEPTH PRESSURE (psi) 
(ft) 

Push 1 Push 2 Push 3 Push 4 
( c e l l )  1 2 1  3 2 1  4 3 2 1  
(thick
ness, mm) 3.0 4.5 3.0 6.0 4.5 3.0 7.5 6.0 4.5 3.0 

5 12.5 17.0 38.0 12.5 49.0 27.0 34.5 33.0 28.0 4.0 

10 29.5 37.0 38.0 13.0 57.0 55.5 33.0 52.0 77.5 4.0 

15 21.5 21.0 42.0 7.0 50.5 39.0 36.5 45.5 53.0 60.0 

20 52.5 51.0 47.5 36.0 46.0 49.0 44.0 43.0 56.0 44.0 

25 26.0 41.5 29.0 26.5 44.0 31.5 45.0 33.0 54.5 70.0 

30 64.0 64.0 62.0 66.0 62.0 60.5 75.0 60.0 66.0 48.0 

35 54.0 64.0 46.0 61.0 62.0 47.5 73.0 56.0 63.0 51.0 
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Location: Indianola, Iowa 

Condition: Nonsliding Zone (By Visual Observation) 

DEPTH PRESSURE (psi) 
(ft) 

Push 1 Push 2 Push 3 Push 4 
( c e l l )  1 2 1  3 2 1  4 3 2 1  
(thick
ness, mm) 3.0 4.5 3.0 6.0 4.5 3.0 7.5 6.0 4.5 3.0 

5 21.0 32.0 23.0 24.0 37.0 39.0 42.0 29.0 45.0 40.0 

10 43.5 49.0 22.5 52.0 36.0 25.5 68.0 24.5 38.0 26.0 

15 11.0 24.0 49.0 18.0 55.0 42.0 35.0 55.0 55.0 32.0 

20 45.5 48.0 3.0 30.5 15.0 42.0 41.0 15.0 65.0 39.0 

25 Blade Bended at First Push 
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Condition: Slide Zone 
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DEPTH 
(ft) 

Push 1 Push 2 
(cell) 
(thick
ness, mm) 

1 

3.0 

2 

4.5 

1 

3.0 

2 20.5 17.0 22.0 

7 16.0 14.0 23.0 

12 43.0 33.0 27.0 

17 18.5 16.5 16.5 

22 37.5 35.5 41.0 

PRESSURE (psi) 

Push 3 
3 

6 . 0  

2 

4.5 

1 

3.0 

4 

7.5 

Push 4 
3 

6 . 0  

2 

4.5 

1 

3.0 

17.0 18.0 13.0 25.0 

drilled through. 

15.0 22.0 21.5 

40.5 44.0 39.0 

15.0 23.5 23.5 24.5 

27.5 44.0 46.5 39.0 

Location: Osceola, Iowa 

Condition: Nonsliding Zone 

MPTH PRESSURE (psi) 
(ft) 

Push 1 Push 2 Push 3 Push 4 
(cell) 1 2 1 3 2 1 4 3 2 1 
(thick
ness, mm) 3.0 4.5 3.0 6.0 4.5 3.0 7.5 6.0 4.5 3.0 

2 29.5 15.0 25.0 12.0 21.0 12.0 5.0 21.5 15.0 38.0 

7 40.5 39.0 56.0 32.0 56.0 32.0 34.0 49.5 45.0 76.0 
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